PowerFlex 70 Adjustable Frequency AC Drive

When reading this document, look for this symbol " Step x " to guide you through the 5 BASIC STEPS needed to install, start-up and program the PowerFlex 70. The information provided Does Not replace the User Manual and is intended for qualified drive service personnel only. For detailed PowerFlex 70 information including application considerations and related precautions refer to the following:

Title	Publication	Available...
PowerFlex 70 User Manual	20A-UM001...	on the CD supplied with the drive or
PowerFlex Reference Manual	PFLEX-RM001...	at www.ab.com/manuals/dr

For Allen-Bradley Drives Technical Support:

Title	Online at...
Allen-Bradley Drives Technical Support	www.ab.com/support/abdrives

Step 1 Read the General Precautions

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the +DC terminal of the Power Terminal Block and the -DC test point (refer to the User Manual for location). The voltage must be zero.

ATTENTION: Configuring an analog input for $0-20 \mathrm{~mA}$ operation and driving it from a voltage source could cause component damage. Verify proper configuration prior to applying input signals.

ATTENTION: Hazard of personal injury or equipment damage exists when using bipolar input sources. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

ATTENTION: Risk of injury or equipment damage exists. DPI or SCANport host products must not be directly connected together via 1202 cables. Unpredictable behavior can result if two or more devices are connected in this manner.

ATTENTION: The "adjust freq" portion of the bus regulator function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. It forces the output frequency to be greater than commanded frequency while the drive's bus voltage is increasing towards levels that would otherwise cause a fault; however, it can also cause either of the following two conditions to occur.

1. Fast positive changes in input voltage (more than a 10% increase within 6 minutes) can cause uncommanded positive speed changes; however an "OverSpeed Limit" fault will occur if the speed reaches [Max Speed] + [Overspeed Limit]. If this condition is unacceptable, action should be taken to 1) limit supply voltages within the specification of the drive and, 2) limit fast positive input voltage changes to less than 10%. Without taking such actions, if this operation is unacceptable, the "adjust freq" portion of the bus regulator function must be disabled (see parameters 161 and 162).
2. Actual deceleration times can be longer than commanded deceleration times; however, a "Decel Inhibit" fault is generated if the drive stops decelerating altogether. If this condition is unacceptable, the "adjust freq" portion of the bus regulator must be disabled (see parameters 161 and 162). In addition, installing a properly sized dynamic brake resistor will provide equal or better performance in most cases.
Note: These faults are not instantaneous and have shown test results that take between 2 and 12 seconds to occur.

EMC Instructions

CE Conformity ${ }^{(1)}$

Conformity with the Low Voltage (LV) Directive and Electromagnetic Compatibility (EMC) Directive has been demonstrated using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. PowerFlex Drives comply with the EN standards listed below when installed according to the User and Reference Manuals.

CE Declarations of Conformity are available online at:
http://www.ab.com/certification/ce/docs.

Low Voltage Directive (73/23/EEC)

- EN50178 Electronic equipment for use in power installations.

EMC Directive (89/336/EEC)

- EN61800-3 Adjustable speed electrical power drive systems Part 3: EMC product standard including specific test methods.

General Notes

- If the adhesive label is removed from the top of the drive, the drive must be installed in an enclosure with side openings less than 12.5 $\mathrm{mm}(0.5 \mathrm{in}$.) and top openings less than 1.0 mm (0.04 in .) to maintain compliance with the LV Directive.
- The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.
- Use of line filters in ungrounded systems is not recommended.
- PowerFlex drives may cause radio interference if used in a residential or domestic environment. The installer is required to take measures to prevent interference, in addition to the essential requirements for CE compliance listed below, if necessary.
- Conformity of the drive with CE EMC requirements does not guarantee an entire machine or installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.
- PowerFlex drives can generate conducted low frequency disturbances (harmonic emissions) on the AC supply system. More information regarding harmonic emissions can be found in the PowerFlex Reference Manual.
(1) CE Certification testing has not been completed for 600 Volt class drives.

Essential Requirements for CE Compliance

Conditions 1-6 listed below must be satisfied for PowerFlex drives to meet the requirements of EN61800-3.

1. Standard PowerFlex 70 CE compatible Drive.
2. Review important precautions/attention statements throughout this manual before installing drive.
3. Grounding as described on page $1-5$ of the User Manual.
4. Output power, control (I/O) and signal wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit or equivalent attenuation.
5. All shielded cables should terminate with the proper shielded connector.
6. Conditions in Table A.

Table A PowerFlex 70 EN61800-3 EMC Compatibility

	Drive Description	Second Environment				First Environment Restricted Distribution
		Restrict Motor Cable to 40 m (131 ft .)	Internal Filter Option	External Filter	Input Ferrite ${ }^{(1)}$	
A	Drive Only	\checkmark		\checkmark		See PowerFlex Reference Manual
	with any Comm Option	\checkmark		\checkmark		
	with Remote I/O	\checkmark		\checkmark	\checkmark	
B	Drive Only	\checkmark	\checkmark			
	with any Comm Option	\checkmark	\checkmark			
	with Remote I/O	\checkmark	\checkmark		\checkmark	
C,	Drive Only	\checkmark				
D,	with any Comm Option	\checkmark				
E	with Remote I/O	\checkmark			\checkmark	

${ }^{(1)}$ Input cables through a Ferrite Core (Frames A, B and C Fair-Rite \#2643102002 or equivalent, Frames D and E Fair-Rite \#2643251002 or equivalent).

Step 2 Mount the Drive - Minimum Requirements

Minimum Mounting Clearances

Specified vertical clearance requirements are intended to be from drive to drive. Other objects can occupy this space; however, reduced airflow may cause protection circuits to fault the drive. In addition, inlet air temperature must not exceed the product specification.

Maximum Surrounding Air Temperature

Enclosure Rating	Temperature Range
Open Type, IP 20, NEMA Type 1 \& Flange Mount $0-50^{\circ} \mathrm{C}\left(32-122^{\circ} \mathrm{F}\right)$	
IP54, IP 66 \& NEMA Type 4X/12	$0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$

Important: Some drives are equipped with an adhesive label on the top of the chassis. Removing the adhesive label from the drive changes the NEMA enclosure rating from Type 1 Enclosed to Open Type.

Dimensions

Table B PowerFlex 70 Frames

Output Power		Frame Size								
$\begin{aligned} & \text { kW } \\ & \text { ND (HD) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{HP} \\ & \mathrm{ND}(\mathrm{HD}) \end{aligned}$	208-240V AC Input			400-480V AC Input			600V AC Input		
		Not Filtered	Filtered	$\begin{array}{\|l\|l\|} \hline \text { IP66 } \\ \text { (4X/12) } \\ \hline \end{array}$	Not Filtered	Filtered	$\begin{array}{\|l\|l\|} \hline \text { IP66 } \\ (4 X / 12) \end{array}$	Not Filtered	Filtered	$\begin{array}{\|l} \hline \text { IP66 } \\ (4 \mathrm{X} / 12) \\ \hline \end{array}$
0.37 (0.25)	0.5 (0.33)	A	B	B	A	B	B	A	-	B
0.75 (0.55)	1 (0.75)	A	B	B	A	B	B	A	-	B
1.5 (1.1)	2 (1.5)	B	B	B	A	B	B	A	-	B
2.2 (1.5)	3 (2)	B	B	B	B	B	B	B	-	B
4 (3)	5 (3)	-	C	D	B	B	B	B	-	B
5.5 (4)	7.5 (5)	-	D	D	-	C	D	C	-	D
7.5 (5.5)	10 (7.5)	-	D	D	-	C	D	C	-	D
11 (7.5)	15 (10)	-	D	D	-	D	D	D	-	D
15 (11)	20 (15)	-	E	E	-	D	D	D	-	D
18.5 (15)	25 (20)	-	E	E	-	D	D	D	-	D
22 (18.5)	30 (25)	-	-	-	-	D	D	D	-	D
30 (22)	40 (30)	-	-	-	-	E	E	-	E	E
37 (30)	50 (40)	-	-	-	-	E	E	-	E	E

Figure 1 PowerFlex 70 Frames A-E IP20/66 (NEMA Type 1/4X/12)

Flange Mount

Dimensions are in millimeters and (inches).

Frame	A	B	C	D	E	F	$\begin{aligned} & \text { Weight }{ }^{(1)} \\ & \mathrm{kg} \text { (lbs.) } \end{aligned}$
IP20/NEMA Type 1							
A	122.4 (4.82)	225.7 (8.89)	179.8 (7.08)	94.2 (3.71)	211.6 (8.33)	5.8 (0.23)	2.71 (6.0)
B	171.7 (6.76)	234.6 (9.24)	179.8 (7.08)	122.7 (4.83)	220.2 (8.67)	5.8 (0.23)	3.60 (7.9)
C	185.0 (7.28)	300.0 (11.81)	179.8 (7.08)	137.6 (5.42)	285.6 (11.25)	5.8 (0.23)	6.89 (15.2)
D	219.9 (8.66)	350.0 (13.78)	179.8 (7.08)	169.0 (6.65)	335.6 (13.21)	$5.8(0.23)$	9.25 (20.4)
E	280.3 (11.04)	555.8 (21.88)	207.1 (8.15)	200.0 (7.87)	491.0 (19.33)	6.9 (0.27)	18.60 (41.0)
IP66 / NEMA Type 4X/12							
B	171.7 (6.76)	239.8 (9.44)	203.3 (8.00)	122.7 (4.83)	220.2 (8.67)	5.8 (0.23)	3.61 (8.0)
D	219.9 (8.66)	350.0 (13.78)	210.7 (8.29)	169.0 (6.65)	335.6 (13.21)	5.8 (0.23)	9.13 (20.1)
E	280.3 (11.04)	555.8 (21.88)	219.8 (8.65)	200.0 (7.87)	491.0 (19.33)	6.9 (0.27)	18.60 (41.0)

Flange Mount

A	$156.0(6.14)$	$225.8(8.89)$	$178.6(7.03)$	$123.0(4.84)$	$55.6(2.19)$	-	$2.71(6.0)$
B	$205.2(8.08)$	$234.6(9.24)$	$178.6(7.03)$	$123.0(4.84)$	$55.6(2.19)$	-	$3.60(7.9)$
C	$219.0(8.62)$	$300.0(11.81)$	$178.6(7.03)$	$123.0(4.84)$	$55.6(2.19)$	-	$6.89(15.2)$
D	$248.4(9.78)$	$350.0(13.78)$	$178.6(7.03)$	$123.0(4.84)$	$55.6(2.19)$	-	$9.25(20.4)$
E	$280.3(11.04)$	$555.8(21.88)$	$207.1(8.15)$	$117.2(4.61)$	$89.9(3.54)$	-	$18.60(41.0)$

[^0]
Step 3 Wire the Drive - Wire Recommendations

Type		Wire Type(s)	Description	Min. Insulation Rating
Power (1)	Standard	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ XHHW2/RHW-2 Anixter B209500-B209507, Belden 29501-29507, or equivalent	- Four tinned copper conductors with XLPE insulation. - Copper braid/aluminum foil combination shield and tinned copper drain wire. - PVC jacket.	
Signal (1) (2) (3)	Standard Analog I/O	Belden 8760/9460 (or equiv.) Belden 8770(or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), twisted pair, 100% shield with drain. $0.750 \mathrm{~mm}^{2}$ (18AWG), 3 cond., shielded for remote pot only.	$\begin{aligned} & \text { 300V, } \\ & 75-90 \text { degrees } \\ & \text { C (167-194 } \\ & \text { degrees F) } \end{aligned}$
Digital I/O (1) (2) (3)	Shielded	Multi-conductor shielded cable such as Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ conductor, shielded.	300V, 60 degrees C (140 degrees F)

${ }^{(1)}$ Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).
(2) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.
(3) I/O terminals labeled " $(-)$ " or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

Terminal Block Specifications

Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
Power Terminal Block	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \& \\ & \mathrm{C} \end{aligned}$	Input power and motor connections	$\begin{aligned} & 3.5 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & \hline 0.66 \mathrm{~N}-\mathrm{m} \\ & (5.5 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
	D	Input power and motor connections	$\begin{aligned} & 8.4 \mathrm{~mm}^{2} \\ & \text { (} \mathrm{AWG} \text {) } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & \text { (18 AWG) } \end{aligned}$	$\begin{array}{\|l\|} \hline 1.7 \mathrm{~N}-\mathrm{m} \\ \text { (15 lb.in. }) \end{array}$	$\begin{aligned} & 1.4 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
	E	Input power and motor connections	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & \text { (3 AWG) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 2.71 \mathrm{~N}-\mathrm{m} \\ & (24 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & \text { 2.71 N-m } \\ & (24 \mathrm{lb} \text {.in. }) \end{aligned}$
I/O Terminal Block	All	Signal \& control connections	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & (16 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{~mm}^{2} \\ & (30 \mathrm{AWG}) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.55 \mathrm{~N}-\mathrm{m} \\ (4.9 \mathrm{lb} .-\mathrm{in} .) \end{array}$	$\begin{aligned} & 0.5 \mathrm{~N}-\mathrm{m} \\ & (4.4 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
SHLD Terminal	All	Terminating point for wiring shields	-	-	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

${ }^{(1)}$ Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

Power \& Ground Wiring

Standard and Enhanced Control I/O Terminal Block

No.	Signal		Description	
1	Digital In 1	$\begin{aligned} & \text { Stop - CF } \\ & \text { (CF = Clear } \\ & \text { Fault) } \end{aligned}$	11.2 mA @ 24 V DC 19.2V minimum on state 3.2 V maximum off state Important: Use only 24V DC, not suitable for 115 V AC circuitry. Inputs can be wired as sink or source. See page 8.	$\begin{aligned} & 361- \\ & 366 \end{aligned}$
2	Digital In 2	Start		
3	Digital In 3	Auto/Man		
4	Digital $\ln 4$	Speed Sel 1		
5	Digital $\ln 5$	Speed Sel 2		
6	Digital In 6	Speed Sel 3		
7	24V Common	-	Drive supplied power for Digital In1-6 inputs. See examples on page 8. 150 mA maximum load.	
8	Digital In Common			
9	+24V DC			
10	+10V Pot Reference	-	2 k ohm minimum load.	
11	Digital Out 1 - N.O. ${ }^{(1)}$	NOT Fault	$\frac{\text { Max Resistive Load }}{250 \mathrm{~V} \text { AC / 30V DC }} \frac{\text { Max Inductive Load }}{250 \mathrm{~V} \text { AC / 30V DC }}$	$\begin{aligned} & 380- \\ & 387 \end{aligned}$
12	Digital Out 1 Common		50 VA / 60 Watts $25 \mathrm{VA} / 30$ Watts	
13	Digital Out 1 - N.C. ${ }^{(1)}$	Fault	Minimum DC Load $10 \mu \mathrm{~A}, 10 \mathrm{mV}$ DC	
14	Analog In 1 (- Volts)		Non-isolated, 0 to $+10 \mathrm{~V}, 10$ bit, 100k ohm input impedance. ${ }^{(3)}$	$\begin{aligned} & 320- \\ & 327 \end{aligned}$
15	Analog ln 1 (+ Volts)	Voltage -		
16	Analog ln 1 (- Current)	Reads	Non-isolated, 4-20mA, 10 bit, 100 ohm input impedance. ${ }^{(3)}$	
17	Analog ln 1 (+ Current)	\& 15		
18	Analog $\ln 2$ (- Volts)	(2)	Isolated, bipolar, differential, 0 to +10 V unipolar (10 bit) or $\pm 10 \mathrm{~V}$ bipolar (10 bit $\&$ sign), 100 k ohm input impedance. ${ }^{(4)}$	
19	Analog In 2 (+ Volts)	Voltage Reads value at 18 \& 19		
20	Analog ln 2 (- Current)		Isolated, $4-20 \mathrm{~mA}, 10$ bit \& sign, 100 ohm input impedance. ${ }^{(4)}$	
21	Analog ln 2 (+ Current)			
22	10V Pot Common Analog Out (- Volts) Analog Out (- Current)	(2) Output Freq	0 to $+10 \mathrm{~V}, 10$ bit, 10 k ohm (2 k ohm minimum) load. 0 to $20 \mathrm{~mA}, 10$ bit, 400 ohm maximum load. ${ }^{(5)}$ Referenced to chassis ground. Common if internal 10 V supply (terminal 10) is used.	$\begin{aligned} & 340- \\ & 344 \end{aligned}$
23	Analog Out (+ Volts) Analog Out (+ Current)			
24	Digital Out 2 - N.O. ${ }^{(1)}$	Run	See description at No.s 11-13.	$\begin{aligned} & 380- \\ & 387 \end{aligned}$
25	Digital Out 2 Common			
26	Digital Out 2 - N.C. ${ }^{(1)}$	NOT Run		

${ }^{(1)}$ Contacts shown in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(2) These inputs/outputs are dependent on a number of parameters. See "Related Parameters."
(3) Differential Isolation - External source must be less than 10 V with respect to PE .
(4) Differential Isolation - External source must be maintained at less than 160 V with respect to PE . Input provides high common mode immunity.
(5) Analog output current is only available with Enhanced Control drives.

I/O Wiring Examples

Input/Output	Connection Example ${ }^{(3)}$		
Potentiometer ${ }^{(1)}$	[Speed Ref A Sel] = "Analog In 1"		$\begin{aligned} & 090 \\ & \text { to } \\ & 095 \end{aligned}$
10k Ohm Pot. Recommended (2k Ohm minimum)	Potentiometer	Joystick	
Recommended (2k Ohm minimum) Joystick ${ }^{(1)}$ $\pm 10 \mathrm{~V}$ Input 100k ohm input impedance	(1)		$\begin{aligned} & 320 \\ & \text { to } \\ & 327 \\ & \\ & 361 \\ & \text { to } \\ & 366 \end{aligned}$
Analog Input Bipolar: $\pm 10 \mathrm{~V}$	[Speed Ref A Sel] = "Analog ln 2"		
	Bipolar ${ }^{(1)}$	Unipolar (Current)	
Unipolar: 0 to $+10 \mathrm{~V}, 100 \mathrm{k}$ ohm impedance 4-20 mA, 100 ohm impedance			
Analog/Digital Output 0 to +10 V Output Can drive a 2 k Ohm load (25 mA short circuit current limit)	Analog Output	Digital N.O. / N.C. Output	$\begin{aligned} & 341 \\ & \text { to } \\ & 344 \end{aligned}$
2 Wire Control ${ }^{(2)}$ -Non-Reversing Requires 2-wire functions only ([Digital $\ln 1$ Sell]). Using 3-wire selections will cause a type 2 alarm.	24 V DC Input ${ }^{(4)}$: [Digital In2 Sel] = "Run"		$\begin{array}{\|l\|} \hline 361 \\ \text { to } \\ 366 \end{array}$
	Internal Supply	External Supply	
3 Wire Control Requires 3 -wire functions only ([Digital In1 Sel]). Using 2-wire selections will cause a type 2 alarm.	24 V DC Input ${ }^{(4)}$: [Digital In1 Sel] = "Stop - CF", [Digital In2 Sel] = "Start"		
	Internal Supply	External Supply	

(1) Refer to the Attention statement on page 2 for important bipolar wiring information.
${ }^{(2)}$ Important: Programming inputs for 2 wire control deactivates all HIM Start buttons.
(3) Examples show hardware wiring only. Refer to page 7 for parameters that must be adjusted.
(4) If desired, a User Supplied 24V DC power source can be used. Refer to the "External" example.

Step 4 Start-Up Check List

- 1. Verify input supply voltage.
\square 2. Check output wiring.
- 3. Check control wiring.
- 4. Apply AC power and control voltages to the drive.

If any of the six digital inputs are configured to Stop - CF (CF = Clear Fault) or Enable, verify that signals are present or the drive will not start. Refer to Troubleshooting - Abbreviated Fault \& Alarm Listing on page 16 for a list of potential digital input conflicts. If the STS LED is not flashing green at this point, refer to Status Indicators on page 9 .

- 5. Select Start-Up method: SMART Start or Assisted Start-Up.

Status Indicators

Name	Color	State	Description
	Green	Flashing	Drive ready, but not running and no faults are present.
		Steady	Drive running, no faults are present.
	Yellow	Flashing, Drive Stopped	An inhibit condition exists, the drive cannot be started. Check parameter 214 [Start Inhibits].
		Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 211 [Drive Alarm 1].
		Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 211 [Drive Alarm 1].
	Red	Flashing	A fault has occurred.
		Steady	A non-resettable fault has occurred.
- PORT MOD NET A NET B	Refer to the Communication Adapter User Manual.		Status of DPI port internal communications (if present).
			Status of communications module (when installed).
			Status of network (if connected).
			Status of secondary network (if connected).

Step 5 Program the Drive - Parameter Files \& Groups

Frequently Used Parameters

		$\begin{gathered} 090 \\ 0 \\ \hline \end{gathered}$	[Speed Ref A Sel] Selects the source of the speed reference to the drive unless [Speed Ref B Sel] or [Preset Speed 1-7] is selected. For more information on selecting a speed reference source, refer to the PowerFlex 70 User Manual, "Speed Reference Control". ${ }^{(1)}$ See Appendix B of the User Manual for DPI port locations. ${ }^{(2)}$ Enhanced Control Drives Only.	Default: Options:	$\begin{aligned} & \hline 2 \\ & 1 \\ & 2 \\ & 3-8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23- \\ & 29 \\ & 30 \end{aligned}$	"Analog $\ln 2$ " "Analog ln 1" "Analog $\ln 2$ " "Reserved" "MOP Level" "Reserved" "Preset Spd1" "Preset Spd2" "Preset Spd3" "Preset Spd4" "Preset Spd5" "Preset Spd6" "Preset Spd7" "DPI Port 1"(1) "DPI Port 2"(1) "DPI Port 3"(1) "Reserved" "DPI Port 5"(1) "Reserved" "HighRes Ref"(2)	002 091 thru 093 101 thru 107 117 thru 120 192 thru 194 213 272 273 220 361 361 thru 366
		091	[Speed Ref A Hi] Scales the upper value of the [Speed Ref A Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & \text { [Maximum Speed] } \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \end{aligned}$		082
		092	[Speed Ref A Lo] Scales the lower value of the [Speed Ref A Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \mathrm{~Hz} \\ & -/+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \end{aligned}$		081
		101 102 103 104 105 106 107	[Preset Speed 1] [Preset Speed 2] [Preset Speed 3] [Preset Speed 4] [Preset Speed 5] [Preset Speed 6] [Preset Speed 7] Provides an internal fixed speed command value. In bipolar mode direction is commanded by the sign of the reference.	Default: Min/Max: Units:	5.0 Hz10.0 Hz20.0 Hz30.0 Hz40.0 Hz50.0 Hz60.0 Hz$-/+[\mathrm{Maximum}$ Speed]0.1 Hz		$\begin{aligned} & 090 \\ & 093 \end{aligned}$
	$\begin{gathered} \stackrel{\ddot{0}}{\stackrel{\rightharpoonup}{\tilde{\sim}}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{array}{\|l\|} \hline 140 \\ 141 \end{array}$	[Accel Time 1] [Accel Time 2] Sets the rate of accel for all speed increases. $\frac{\text { Max Speed }}{\text { Accel Time }}=\text { Accel Rate }$	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \text { Secs } \\ & 10.0 \text { Secs } \\ & 0.1 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$		142 143 146 361 thru 366
$\begin{aligned} & \overline{0} \\ & 0 \\ & \sum \sum \\ & \sum \\ & \vdots \end{aligned}$		$\begin{aligned} & 142 \\ & 143 \end{aligned}$	[Decel Time 1] [Decel Time 2] Sets the rate of decel for all speed decreases. $\frac{\text { Max Speed }}{\text { Decel Time }}=\text { Decel Rate }$	Default: Min/Max: Units:	10.0 Secs10.0 Secs$0.1 / 3600.0$ Secs0.1 Secs		140 141 146 361 thru 366

Troubleshooting－Abbreviated Fault \＆Alarm Listing

For a complete listing of Faults and Alarms，refer to the PowerFlex 70 User Manual．

Fault	\％	${ }_{\text {E }}^{\text {I }}$	Description	Action
Auxiliary Input	2	（1）	Auxiliary input interlock is open．	Check remote wiring．
Motor Overload	7	（1）	Internal electronic overload trip． Enable／Disable with［Fault Config 1］．	An excessive motor load exists． Reduce load so drive output current does not exceed the current set by ［Motor NP FLA］．
OverSpeed Limit	25	（1）	Functions such as Slip Compensation or Bus Regulation have attempted to add an output frequency adjustment greater than that programmed in ［Overspeed Limit］．	Remove excessive load or overhauling conditions or increase ［Overspeed Limit］．
SW OverCurrent	36	（1）	Drive output current has exceeded the 1 ms current rating． This rating is greater than the 3 second current rating and less than the hardware overcurrent fault level．It is typically 200－250\％ of the drive continuous rating．	Check for excess load，improper DC boost setting．DC brake volts set too high．
IR Volts Range	77		＂Calculate＂is the autotune default and the value determined by the autotune procedure for IR Drop Volts is not in the range of acceptable values．	Re－enter motor nameplate data．
FluxAmpsRef Rang	78		The value for flux amps determined by the Autotune procedure exceeds the programmed［Motor NP FLA］．	1．Reprogram［Motor NP FLA］with the correct motor nameplate value． 2．Repeat Autotune．

${ }^{(1)}$ See the User Manual for a description of fault types．

Alarm Dig In ConflictA	$\stackrel{\text { ¢ }}{ }$	$\begin{array}{\|l\|} \hline \hat{\mathrm{O}} \\ \mathrm{O} \\ \mathrm{I} \end{array}$	Description							
	17	（2）	Digital input functions are in conflict．Combinations marked with a＂．i．i＂will cause an alarm．							
				Acc2／Dec2	Accel 2	Decel 2	Jog	Jog Fwd	Jog Rev	Fwd／Rev
			Acc2／Dec2		．iil．	．iil．				
			Accel 2	軆						
			Decel 2	．it						
			Jog					年	年	
			Jog Fwd				． 市 $^{\text {a }}$			．i．
			Jog Rev				年			＋
			Fwd／Rev					\＃	＋	

${ }^{(1)}$ See User Manual for a description of alarm types.

Manually Clearing Faults

Step

$\mathrm{Key}(\mathrm{s})$

1. Press Esc to acknowledge the fault. The fault information will be removed so that you can use the HIM.
2. Address the condition that caused the fault.

The cause must be corrected before the fault can be cleared.
3. After corrective action has been taken, clear the fault by one of these methods:

- Press Stop

- Cycle drive power
- Set parameter 240 [Fault Clear] to "1."
- "Clear Faults" on the HIM Diagnostic menu.

www.rockwellautomation.com

Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212 .5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 2663 0640 Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281 .2433
Europe/Middle East/Africa: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011
U.S. Allen-Bradley Drives Technical Support

Tel: (1) 262.512 .8176 , Fax: (1) 262.512.2222, Email: support@ drives.ra.rockwell.com, Online: www.ab.com/support/abdrives

[^0]: (1) Weights include HIM and Standard I/O.

