
For further Questions, please call:

# ACP&D Limited.

Unit 9A, Charlestown Industrial Estate, Robinson Street, Ashton-under-Lyne, Lancashire, OL6 8NS. Tel: +44 (0)161 343 1884 Fax: +44 (0)161 339 0650 e-mail: sales@acpd.co.uk



**Operating Manual** 



**RELEASE: 20FW9B** 

Edition: 19.02.2002

APD99English - 020618.doc

| SIZE                         |      | APD 1         |
|------------------------------|------|---------------|
| Vac nom.                     | [V]  | From 14 to 26 |
| Vac max.                     | [V]  | 28            |
| Vac min.                     | [V]  | 13            |
| I max.                       | [A]  | 2.0           |
| I min.                       | [A]  | 0.2           |
| I step                       | [A]  | 0.2           |
| <b>Operating temperature</b> | [°C] | 0-55          |

## **TECHNICAL DATA**

#### **PARAMETERS DESCRIPTION**

| Vac nom.:                 | Rated value of ac voltage by which the drive can be powered.      |  |  |
|---------------------------|-------------------------------------------------------------------|--|--|
| Vac max.:                 | Maximum voltage at which drive can operate.                       |  |  |
| Vac min.:                 | Minimum voltage at which drive can operate.                       |  |  |
| I max.:                   | Maximum value of phase current.                                   |  |  |
| I min.:                   | Minimum value of phase current.                                   |  |  |
| I step:                   | Spacing of the eight current values.                              |  |  |
| Operation<br>temperature: | For any current over 1.5 Amps, a forced ventilation is necessary. |  |  |

### **PROTECTIONS**

Drive is provided with protections against over-temperature. If the mentioned condition occurs, drive disables the power bridge and shows an error condition on the display.

If drive is ready, display shows the letter 'r' (ready).

### **INPUTS AND OUTPUTS**

Inputs are PNP (from 12Vdc to 30Vdc) and outputs are PNP (max. 10 mA).

#### SERIAL INTERFACE

Drives are supplied with RS 232 or RS 485 serial interface according to the models:

MODEL SERIAL INTERFACE:

APD1/A RS485 interface, half duplex or full duplex selectable by JP4 jumper.

APD1/B RS232.

Communication protocol is on board and described afterwards.

## **DRIVE CONNECTION**

### **POWER SUPPLY:**

### LEADS:

power supply: AC or DC input power supply: AC or DC input J1-1 J1-2

## POWER SUPPLY INPUT STAGE:

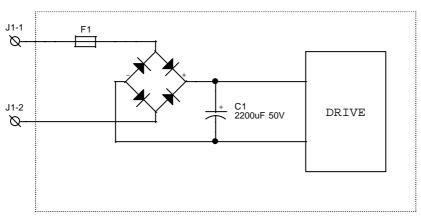
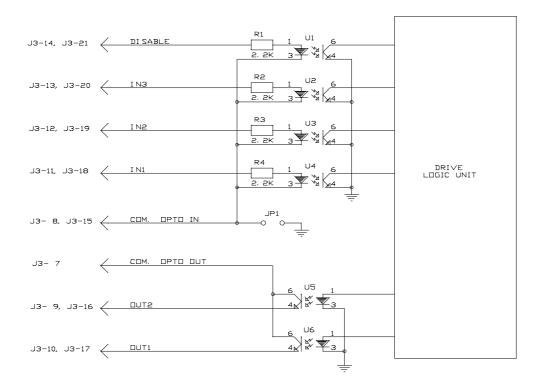



FIG.1

### **MOTOR CONNECTION:**


| LEADS:     | MOTOR PHASE:          | LEADS:     | <b>MOTOR PHASE:</b>   |
|------------|-----------------------|------------|-----------------------|
| 1-PHASE A1 | Phase A1 step motor 1 | 2-PHASE A1 | Phase A1 step motor 2 |
| 1 PHASE A2 | Phase A2 step motor 1 | 2-PHASE A2 | Phase A2 step motor 2 |
| 1-PHASE B1 | Phase B1 step motor 1 | 2-PHASE B1 | Phase B1 step motor 2 |
| 1-PHASE B2 | Phase B2 step motor 1 | 2-PHASE B2 | Phase B2 step motor 2 |

## **INPUT / OUTPUT CONNECTIONS:**

For inputs/outputs connections see diagram Fig. 2.

## **INPUTS/OUTPUTS DIAGRAM**

Two drives are mounted on APD card, each one has a "disabled" signal: 3 inputs -2 outputs. Input/output status of each drive is shown in the following diagram:





Inputs and outputs are PNP.

The drive assumes as high logic status any voltage between 12V and 24V

| Non-optoisolated inputs | : Jumper JP1                           | - Inserted                                                                                                          |
|-------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Optoisolated inputs     | : Jumper JP1<br>Pin 18 of J3 connector | <ul> <li>Not Inserted</li> <li>inserted to GND of external power supply<br/>(common input optoisolators)</li> </ul> |

Outputs are always optoisolated. Therefore, an external powering (+12V/+24V) must be connected to the common pole of the optoisolators (Pin 7 of connector J3). Max. current for each output 10 mA.

## JUMPERS SETTINGS

- JP1 When inserted, it associates the inputs common pole with drive GND (non-optoisolated inputs)
- JP2 -When inserted into 1-2 position, aux. Output +12V When inserted into 2-3 position, aux. Output +5V
- JP4 When inserted into 1-2 position RS485 serial interface is on full duplex mode (only APD1/A model) When inserted into 2-3 position RS485 serial interface is on half duplex mode (only APD1/A model)
- JP5,JP6 When inserted, they add termination resistors (120 Ohm) needed for the last drive of the chain, between the signals TX+,TX- and RX+,RX- of the RS485 serial interface.

Factory configuration: JP1 inserted; JP2 position 1-2; JP4 inserted in 1-2 position; JP5, JP6 not inserted.

## **OPERATING MODE**

Drive can be used in standard mode (with step and direction signals), or in serial interface mode.

DIPB 1 OFF: Standard mode (steps/direction) ON: Serial mode (RS232 or RS485 according to the models)

Select must be done before powering the drive (through Dip-Switch B 1)

# STANDARD MODE (STEP/DIRECTION)

In each of both drives following signals are present :

## **INPUTS:**

| SIGNAL               | FUNCTION                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DISABLE              | It disables the power bridge.                                                                                                                                   |
| CURRENT<br>REDUCTION | It reduces the motor current.                                                                                                                                   |
|                      | The percentage of current reduction can be set from 25% to 50% of the regulated current through dip-switch A-1 (for motor 1) and dip-switch A-4 (for motor 2).  |
| DIRECTION            | Select the motor wise                                                                                                                                           |
|                      | Signals must be stable for at least 50 microsecunds before and 50 microsecunds after the low/high transition of the STEP-IN signal.                             |
| STEP-IN              | Motor execute the step on the LOW/HIGH transition of this signal.                                                                                               |
|                      | Use a square wave with duty-cycle of 50%.                                                                                                                       |
|                      | Signal absence for 0.5 seconds determines automatic current reduction (stand-by condition).                                                                     |
|                      | Percentage of reduction in stand-by can be set to 25% or to 50% of the regulated current through dip-switch A-1 (for motor 1) and dip-switch A-4 (for motor 2). |

## **OUTPUTS:**

| SIGNAL | FUNCTION                                                                                                      |  |
|--------|---------------------------------------------------------------------------------------------------------------|--|
| OUT1   | Unassigned                                                                                                    |  |
| OUT2   | Output DRIVE-READY . Open collector (10 mA max)<br>Drive in protection: Low level<br>Drive ready : High level |  |

## **CURRENT REGULATION:**

For current regulation of both drives proceed as follows:

- 1 Turn dip-switch B-4 to ON (current regulation mode). A number will appear on display showing selected current See table stated here below.
- 2 Turn dip-switch B3 to OFF in order to display and to regulate current on DRIVE 1.
- Turn dip-switch B3 to ON in order to display and to regulate current on DRIVE 2.
- 3 Turn dip-switch B4 to OFF in order to exhit from current regulation mode.

Following table shows the relation between the displayed numbers and the effective entered current:

| DISPLAYED VALUE | SETTING<br>CURRENT (A) |
|-----------------|------------------------|
| 1               | 0.2                    |
| 2               | 0.4                    |
| 3               | 0.6                    |
| 4               | 0.8                    |
| 5               | 1.0                    |
| 6               | 1.2                    |
| 7               | 1.4                    |
| 8               | 1.6                    |
| 9               | 1.8                    |
| А               | 2.0                    |
| В               | 2.2                    |
| С               | 2.4                    |

NOTE: ADJUST CURRENT WHEN MOTOR IS HOLDING

### **DIP-SWITCHES SETTINGS IN STANDARD MODE:**

| DIP SWITCH A |                                                |                                                        |  |  |  |
|--------------|------------------------------------------------|--------------------------------------------------------|--|--|--|
| DIP          | ON                                             | OFF                                                    |  |  |  |
| 6            | Half step (400 steps/rev.) (MOTOR 1)           | Full step (200 steps/rev.) (MOTOR 1)                   |  |  |  |
| 5            | Unassigned                                     | Unassigned                                             |  |  |  |
| 4            | 50% current reduction in stand-by condition    | 75% current reduction in stand by condition in respect |  |  |  |
|              | in respect to the entered current. (MOTOR 1)   | to the entered current. (MOTOR 1)                      |  |  |  |
| 3            | Half step (400 steps/rev.)(MOTOR 2)            | Full step (200 steps/rev.) (MOTOR 2)                   |  |  |  |
| 2            | Unassigned                                     | Unassigned                                             |  |  |  |
| 1            | 50% Current reduction in stand-by condition in | 75%Current reduction in stand-by condition in respect  |  |  |  |
|              | respect to the entered current. (MOTOR 2)      | to the entered current. (MOTOR 2)                      |  |  |  |

| DIP SWITCH B |                                                                     |                                                                  |  |
|--------------|---------------------------------------------------------------------|------------------------------------------------------------------|--|
| DIP          | ON                                                                  | OFF                                                              |  |
| 4            | Current regulation mode                                             | RUN mode                                                         |  |
| 3            | MOTOR 1 current regulation (dip-switch A-4 ON)                      | MOTOR 2 current regulation (dip-switch A-4 ON)                   |  |
| 2            | Unassigned                                                          | Unassigned                                                       |  |
| 1            | Serial commands operation<br>(select before switching on the drive) | Steps/Direction operation (select before switching on the drive) |  |

## 

## **SERIAL MODE**

Commands enter through serial interface.

### **INPUTS:**

| SIGNAL  | FUNCTION                                                         |
|---------|------------------------------------------------------------------|
| DISABLE | It disables power bridge                                         |
| IN1     | Programmable inputs as per instructions stated in the following. |
| IN2     | Idem                                                             |
| IN3     | Idem                                                             |

### **OUTPUTS:**

| SIGNAL       | FUNCTION                                                                                                      |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| OUT 1        | IN-POSITION output:<br>Motor holding : Low level                                                              |  |  |  |
|              | Motor running : High level                                                                                    |  |  |  |
|              | The indicated levels are the default ones. They can be inverted through a serial command. (see 0x2B, page 14) |  |  |  |
| <b>OUT 2</b> | DRIVE-READY output:                                                                                           |  |  |  |
|              | Drive in protection: Low level                                                                                |  |  |  |
|              | Drive ready : High level                                                                                      |  |  |  |

### **CURRENT REGULATION:**

Motor current can be set by on board trimmers.pot., as described in STANDARD mode: besides this value can be changed through a serial command.

The trimmers.pot setting value is acquired by the processor at 'power on' or at current regulation setting.

Current setting through serial command will remain available only until drive will be un-powered or until current regulation will be set through the trimmers.pot..

Therefore trimmer can be used for setting a default current at 'power-on', subsequently current can be set to a different value through serial command.

## SWITCHES AND COMMUNICATION INTERFACE SETTINGS

Communication parameters:BAUD RATE: 9600 (DIP A-1 ON) or 19200 (DIP A-1 OFF)PARITY: NO PARITYDATA BITS: 8BIT STOP: 1

DRIVE IDENTIFICATION ADDRESS SETTINGS ON 'A' DIP-SWITCH

| DIPA-2 | DIPA-3 | DIPA-4 | DIPA-5 | DIPA-6 | ADDRESS | ADDRESS |
|--------|--------|--------|--------|--------|---------|---------|
| (BIT4) | (BIT3) | (BIT2) | (BIT1) | (BIT0) | DRIVE 1 | DRIVE 2 |
| OFF    | OFF    | OFF    | OFF    | OFF    | 0       | 1       |
| OFF    | OFF    | OFF    | OFF    | ON     | 1       | 2       |
| OFF    | OFF    | OFF    | ON     | OFF    | 2       | 3       |
| OFF    | OFF    | OFF    | ON     | ON     | 3       | 4       |
| OFF    | OFF    | ON     | OFF    | OFF    | 4       | 5       |
| OFF    | OFF    | ON     | OFF    | ON     | 5       | 6       |
| OFF    | OFF    | ON     | ON     | OFF    | 6       | 7       |
| OFF    | OFF    | ON     | ON     | ON     | 7       | 8       |
| OFF    | ON     | OFF    | OFF    | OFF    | 8       | 9       |
| OFF    | ON     | OFF    | OFF    | ON     | 9       | 10      |
| OFF    | ON     | OFF    | ON     | OFF    | 10      | 11      |
| OFF    | ON     | OFF    | ON     | ON     | 11      | 12      |
| OFF    | ON     | ON     | OFF    | OFF    | 12      | 13      |
| OFF    | ON     | ON     | OFF    | ON     | 13      | 14      |
| OFF    | ON     | ON     | ON     | OFF    | 14      | 15      |
| OFF    | ON     | ON     | ON     | ON     | 15      | 16      |
| ON     | OFF    | OFF    | OFF    | OFF    | 16      | 17      |
| ON     | OFF    | OFF    | OFF    | ON     | 17      | 18      |
| ON     | OFF    | OFF    | ON     | OFF    | 18      | 19      |
| ON     | OFF    | OFF    | ON     | ON     | 19      | 20      |
| ON     | OFF    | ON     | OFF    | OFF    | 20      | 21      |
| ON     | OFF    | ON     | OFF    | ON     | 21      | 22      |
| ON     | OFF    | ON     | ON     | OFF    | 22      | 23      |
| ON     | OFF    | ON     | ON     | ON     | 23      | 24      |
| ON     | ON     | OFF    | OFF    | OFF    | 24      | 25      |
| ON     | ON     | OFF    | OFF    | ON     | 25      | 26      |
| ON     | ON     | OFF    | ON     | OFF    | 26      | 27      |
| ON     | ON     | OFF    | ON     | ON     | 27      | 28      |
| ON     | ON     | ON     | OFF    | OFF    | 28      | 29      |
| ON     | ON     | ON     | OFF    | ON     | 29      | 30      |
| ON     | ON     | ON     | ON     | OFF    | 30      | 31      |

NOTE: If several drives are connected on RS485 serial line, make sure that all drives have a different address.

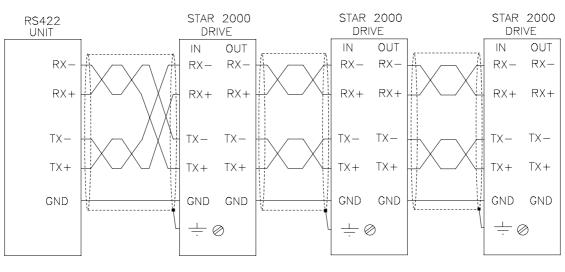
| <b>DIP SWITCH B – SERIAL MODE</b> |                                                                       |                                                 |  |  |
|-----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--|--|
| DIP                               | ON                                                                    | OFF                                             |  |  |
| 4                                 | Current regulation mode                                               | RUN mode                                        |  |  |
| 3                                 | MOTOR 1 current regulation (with DIPA-4 ON)                           | MOTOR2 current regulation (with DIP A-4 ON)     |  |  |
| 2                                 | Damping deactivated for MOTORS 1 and 2                                | Damping activated for MOTORS 1 and 2            |  |  |
|                                   |                                                                       | (for damping the mechanical motor's resonances) |  |  |
| 1                                 | Serial mode                                                           | Standard mode                                   |  |  |
|                                   | (set before powering up the drive) (set before powering up the drive) |                                                 |  |  |

## TRANSMISSION TIMING OF SERIAL COMMANDS:

Following instructions must be undertaken by sending any serial command to the drive:

Enter drive delay answer commands (command 0x28); this value allowes PC or PLC to have enough time for receiving drive answer (ex. 5ms)

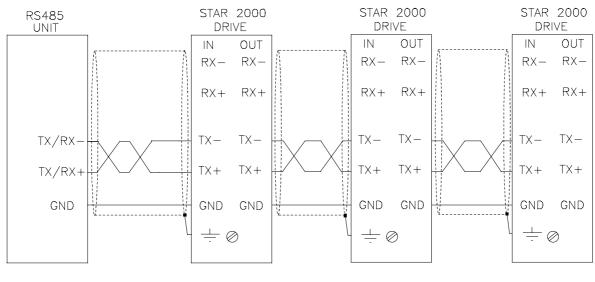
Enter following commands:


#### COMMANDS WITH ANSWER:

- Send command to drive
- Wait for answer from drive
- Send next command
- Wait for answer from drive

#### COMMANDS WITHOUT ANSWER:

- Send command to drive
- Delay of at least 5 ms (for command execution)
- Send next command
- Delay of at least 5 ms (for command execution)


## **RS485/422 SERIAL CONNECTION DIAGRAM:**



**RS485 FULL DUPLEX CONNECTION** 

FIG.3

To use RS485 full duplex (RS422) set JP4 jumper between 1-2 position (factory default) and see FIG.3.



### **RS485 HALF DUPLEX CONNECTION**

FIG.4

To use RS485 half duplex set JP4 jumper between 2-3 position and see FIG.4.

## **COMMUNICATION PROTOCOL**

Systems can use a single drive or several drives, which are connected in multi-drop to RS485 serial line (full duplex). Commands can be sent either to a definite drive (by specifying its address in the string command) or to all drives. In the first case drive will answer to the command; in the second case no reply will be given.

#### SINGLE ADDDRESS COMMAND:

#### DATA TO BE SENT TO THE DRIVE:

Commands succession to be sent to the drive must respect following structure:

byte\_start, byte\_nbyte\_address, byte command, [byte\_par0], [byte\_par1], byte\_checksum

| byte_start           | : 0xFC. This byte means that a command will be sent to one drive only,                                                                                                                                                                                                                                               |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| byte_nbyte_address   | <ul> <li>This byte contains two indications:</li> <li>The first 5 bits (from bit0 to bit4) contain the drive address (from 0 to 31).</li> <li>The following 3 bits (from bit5 to bit7) contain the bytes numbers which follow <i>byte_nbyte_address</i> before sending the <i>byte_checksum</i>.</li> </ul>          |  |
| byte_command         | : This byte represents the command (see commands protocol ).                                                                                                                                                                                                                                                         |  |
| byte_par0, byte_par1 | : The bytes, which follow the byte_command, represent the entered command parameters.                                                                                                                                                                                                                                |  |
| byte_checksum        | : This byte must be calculated by the user as complement of the less significant byte resulting from the sum of all sending bytes (including the byte_start), in order to have, as final result, one byte only. The function of this byte is to verify the correct command transmission (see example in Appendix A). |  |

DRIVE ANSWER:

Wrong or not foreseen command transmission, drive will answer byte-nak (0x15).

Correct command transmission, drive will answer  $byte_ack$  (0x06) and it will be followed by an answer bytes series as foreseen in the above mentioned format.

#### **MULTI ADDRESSES COMMAND:**

#### DATA TO BE SENT TO THE DRIVES:

Commands format to be sent to the drives must respect following structure:

byte\_start, byte\_nbyte\_address, byte\_multiaddress, byte\_command, [byte\_par0], byte\_address1, [byte\_address2], [byte\_address3], [byte\_address4], byte\_checksum

| byte_start         | : 0xFC. This byte means that a command will be sent.                                                                                                                                                                                                                                                               |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| byte_nbyte_address | <ul> <li>: This byte contains two information:</li> <li>- In the first 5 bytes enter no. 31 address</li> <li>- The following 3 bytes (from 5 byte to 7 byte) show the bytes numbers which will follow <i>byte_nbyte_address</i> before sending <i>byte_checksum</i>.</li> </ul>                                    |  |
| byte_multiaddress  | : 0xA5. This byte indicates that command is addressed to several drives, whose address will be specified in the following bytes.                                                                                                                                                                                   |  |
| byte_command       | : This byte represents the command (see commands protocol).                                                                                                                                                                                                                                                        |  |
| byte_par0          | : The byte, which follows <i>byte_command</i> , represents the entered command parameter (if necessary).                                                                                                                                                                                                           |  |
| byte_address14     | : Bytes, which follow <i>byte_command</i> , represent drives addresses to which command has been addressed. Four addresses can be sent if command foresees 1 parameter. Five addresses can be sent if command does not foresee any parameter.                                                                      |  |
| byte_checksum      | : This byte must be calculated by the user as complement of the less significant byte resulting from the sum of all sending bytes (including <i>byte_start</i> ), in order to have one byte only, as final result. Function of this byte is to verify the correctcommand transmission (see example in Appendix A). |  |

#### DRIVES ANSWER:

If command correct, it will be executed. If wrong, it will be not executed, by giving a 'no' answer. Command being addressed to several drives, they cannot answer, otherwise an hardware conflict would be caused.

#### COMMAND ADDRESSED TO ALL DRIVES:

#### DATA TO BE SENT TO THE DRIVES:

Commands format to be sent to the drives must respect following structure:

byte\_start, byte\_switchall, byte\_nbyte, byte command, [byte\_par0], [byte\_par1], byte\_checksum

| byte_start           | : 0xFC. This byte means that a command will be sent to only one drive                                                                                                                                             |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| byte_switchall       | : 0x00. This byte means that a command will be sent to all drives                                                                                                                                                 |  |
| byte_nbyte           | : This byte indicates the bytes number which will follow <i>byte-nbyte address</i> before sending <i>byte-checksum</i> .                                                                                          |  |
| byte_command         | : This byte represents the command (see commands protocol).                                                                                                                                                       |  |
| byte_par0, byte_par1 | : Bytes, which follow <i>byte_command</i> , represent the entered command parameters.                                                                                                                             |  |
| byte_checksum        | : This byte must be calculated by the user as complement of the less significant byte resulting from the sum of all sending bytes (including <i>byte_start</i> ), in order to have one byte only as final result. |  |

The function of this byte is to verify the correct command transmission (see example in Appendix A).

#### DRIVES ANSWER:

If command correct, it will be executed. If wrong, it will be not executed, by giving 'no' answer. Command being addressed to several drives, they cannot reply, otherwise an hardware conflict would be caused.

# **COMMANDS PROTOCOL**

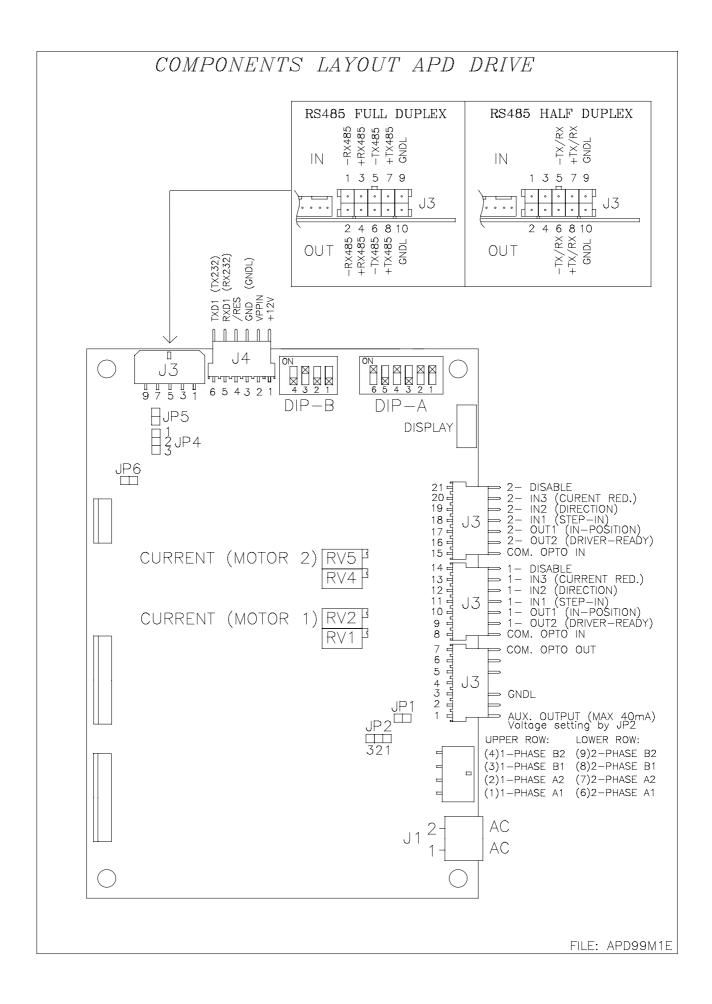
| COMMAND | PARAMETERS                                                                              | ANSWER                                                                                                                                                                                                                                                                                                  | FUNCTION                                                                                                                    |
|---------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0x01    | None                                                                                    | byte_ack                                                                                                                                                                                                                                                                                                | DRIVE RESET: It stops the motor. It initializes speed and ramp to 0.                                                        |
| 0x02    | None                                                                                    | byte_ack                                                                                                                                                                                                                                                                                                | SOFTWARE START: By sending this command, motor is running according to the transmitted values (speed and ramp).             |
| 0x10    | None                                                                                    | byte_ack + byte_start+<br>byte_nbyte_address+<br>0xNN+byte_chksum                                                                                                                                                                                                                                       | REQUEST FOR SOFTWARE<br>VERSION                                                                                             |
|         |                                                                                         | NN=Software version                                                                                                                                                                                                                                                                                     |                                                                                                                             |
| 0x11    | None                                                                                    | byte_ack                                                                                                                                                                                                                                                                                                | IMMEDIATE STOP: Motor<br>decelerates according to the preset<br>ramp and then it stops.                                     |
| 0x12    | None                                                                                    | byte_ack+byte_start+<br>byte_nbyte_address+byte1<br>+byte2+byte3+byte4+byte<br>_chksum                                                                                                                                                                                                                  | READING PRESENT POSITION: By receiving command 0x13 drive show present motor condition with 4 bytes                         |
| 0x13    | None                                                                                    | byte_ack+byte_start+<br>byte_nbyte_address+<br>0xNN+byte_chksum<br>NN=byte, in which the 4<br>less significant bits<br>represent the inputs status<br>(1=input activated),<br>next 2 bits represent the<br>outputs status<br>(1=output activated), the<br>last 2 bits are not utilized<br>(always at 0) | READING OF INPUTS / OUTPUTS                                                                                                 |
| 0x14    | None                                                                                    | Byte_ack+Byte_start+<br>byte_nbyte_address+<br>0xNN+Byte_chksum                                                                                                                                                                                                                                         | INQUARY FOR DRIVE TYPE:<br>drive signals a number<br>corresponding to the drive type                                        |
| 0x20    | 2 bytes, which indicate the<br>minimum frequency (from 0 to<br>10000 Hz)                | Byte_ack                                                                                                                                                                                                                                                                                                | SETTING OF MINIMUM<br>FREQUENCY.                                                                                            |
| 0x21    | 2 bytes, which indicate the<br>maximum frequency (from 0 to<br>10000 Hz)                | byte_ack                                                                                                                                                                                                                                                                                                | SETTING OF MAXIMUM<br>FREQUENCY<br>NOTE: If motor is running, this<br>parameter will be acquired by<br>next motion command. |
| 0x22    | 1 byte, which indicates the ramp<br>inclination (from 0 to 255)<br>expressed in ms * 10 | byte_ack                                                                                                                                                                                                                                                                                                | SETTING OF RAMP INCLINATION<br>NOTE: If motor is running, this<br>parameter will be acquired by the next<br>motion command. |
| 0x23    | 4 bytes, which indicate the<br>absolute motor position<br>(expressed in 1/128 step)     | byte_ack                                                                                                                                                                                                                                                                                                | SETTING OF THE ABSOLUTE<br>POSITION: Drive associates the<br>entered value as present position of the<br>motor              |

| COMMAND | PARAMETERS                                                                                                                                                                                                                                                                                                                              | ANSWER   | FUNCTION                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x26    | 1 byte, which indicates motor<br>resolution.<br>If the entered byte<br>= 0 full step mode<br>= 1 half step mode                                                                                                                                                                                                                         | byte_ack | SETTING OF MOTOR<br>RESOLUTION<br>NOTE: If motor is running, this<br>parameter will be acquired by the<br>next motion command.                                           |
| 0x27    | 1 byte, which indicates time<br>and mode of current reduction.<br>The first 6 bits indicate<br>time after which current<br>reduction (from 0 to 63) must<br>occur on a time basis of 32<br>ms. The next 2 bits indicate the<br>reduction mode:<br>00 – current 0<br>01 - no reduction<br>10 – reduction to 25%<br>11 – reduction to 50% | byte_ack | SETTING OF ELECTRIC CURRENT<br>REDUCTION                                                                                                                                 |
| 0x28    | 1 byte, which indicates delayed<br>answer of serial interface<br>(from 0 to 255) expressed in<br>$\mu$ s * 512                                                                                                                                                                                                                          | byte_ack | SETTING ANSWER DELAY                                                                                                                                                     |
| 0x29    | 1 byte: the 4 less significant bits<br>indicate the input or the inputs,<br>which must be enabled for<br>STARTING (1 input enabled).<br>The next 4 bits indicate the level<br>of these inputs (1=active input at<br>high level)                                                                                                         | byte_ack | TRIGGER START. It defines the<br>input or the inputs and the respective<br>levels, which must be enabled for<br>carrying out the START by an external<br>command.        |
| 0x2A    | 1 byte: the first 4 bits<br>indicate the input or the inputs,<br>which must be enabled for<br>STOPPING (1= enabled input).<br>The next 4 bits indicate the level<br>of these inputs (1=input active at<br>high level)                                                                                                                   | byte_ack | TRIGGER STOP. It defines the input<br>or the inputs and the respective levels,<br>which must be enabled for carrying out<br>the STOP by an external command.             |
| 0x2B    | 1 byte, indicates the level of<br>the output 'in position':<br>0 - output motor is holding = $0255 - $ output motor is holding= $1$                                                                                                                                                                                                     | byte_ack | 'IN POSITION' OUTPUT LEVEL                                                                                                                                               |
| 0x2C    | 1 byte: the 4 less significant bits<br>indicate the input or the inputs,<br>which must be enabled for doing<br>the HOME function (1=input<br>enabled), the next 4 bits indicate<br>the level of these inputs (1=input<br>active at high level)                                                                                          | byte_ack | TRIGGER HOME. It defines the input<br>or the inputs and the respective levels,<br>which must be enabled for carrying out<br>the HOME function by an external<br>command. |
| 0x30    | 4 bytes, wich indicate the<br>absolute position as to the<br>HOME position, which the<br>motor must reach (expressed in<br>1/128 step).<br>(values admitted: from<br>-2147483647 to 2147483647)                                                                                                                                         | byte_ack | ABSOLUTE POSITIONING<br>(REGARDING HOME POINT)                                                                                                                           |

| COMMAND | PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANSWER   | FUNCTION                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x31    | 4 bytes, which indicate the to be<br>executed positioning with<br>respect to the present position of<br>the motor (expressed in 1/128<br>step)<br>(value admitted: from<br>-2147483647 to 2147483647)                                                                                                                                                                                                                                                           | byte_ack | RELATIVE POSITIONING                                                                                                                                                                                                                                                     |
| 0x32    | 1 byte, which indicates the<br>rotation direction<br>if = 0 CW<br>if = 255 CCW                                                                                                                                                                                                                                                                                                                                                                                  | byte_ack | INFINITE MOTION. When<br>sending this command, motor is<br>running at the speed entered in the<br>specified rotation direction.<br>NOTE: SEND THIS COMMAND<br>ONLY WHEN THE MOTOR IS<br>HOLDING.                                                                         |
| 0xA0    | 5 bytes: - the 4 less significant<br>bits indicate the input or the<br>inputs, which must be enabled<br>for doing the ZERO AT<br>FLIGHT (1=input enabled), the<br>next 4 bits indicate the level of<br>these inputs (1=input active at<br>high level)<br>- next 4 bytes: these indicate the<br>positioning to be done in the<br>same rotation direction since<br>when the condition expressed in<br>the first byte occurs (values<br>admitted: 0 to 2147483647) | byte_ack | ZERO AT FLIGHT: It defines the<br>input or the inputs and the respective<br>levels, which must be enabled for<br>executing zeroing of the value in the<br>present motor position, when this<br>condition comes and the executing<br>value on occasion of this condition. |
| 0xA6    | None                                                                                                                                                                                                                                                                                                                                                                                                                                                            | byte_ack | MOTION TO ZERO VALUE                                                                                                                                                                                                                                                     |
| 0xA8    | 2 bytes, which indicate the<br>current value (from 0 to 2000<br>mA)                                                                                                                                                                                                                                                                                                                                                                                             | byte_ack | CURRENT SETTING<br>(ex. 1000 = 1A, 2000=2A). Entering<br>a wrong value the answer will be<br>Byte_nack.                                                                                                                                                                  |

| COMMAND | PARAMETERS | ANSWER                                                                      | FUNCTION                                                           |
|---------|------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0xAC    | None       | BIT0: 0 =motor is holding<br>1 =motor is running                            | DRIVE STATUS: Only one byte includes all information regarding the |
|         |            | BIT1: 0=zero at flight not<br>active or executed<br>1=zero at flight active | drive status                                                       |
|         |            | BIT2: 0=drive ok<br>1=drive in protection                                   |                                                                    |
|         |            | BIT35: input status 1,2,3<br>(1=activated)                                  |                                                                    |
|         |            | BIT6-7: output status 1,2<br>(1=activated)                                  |                                                                    |

byte\_ack=0x06; byte\_start=0xFC All values preceded by '0x' are hexadecimal.


#### NOTES:

All values sent are expressed in 1/128 step. Therefore, if we intend to carry out a revolution to a motor of 200 steps/rev. sending value to drive would be 25600.

By changing the phase evolution mode from full step to half step, the value will remain the same.

Input trigger commands are enabled as soon as the command is sended and still active till executed. To repeat send command again

SOME EXAMPLES OF COMMAND STRINGS ARE DESCRIBED IN APPENDIX A.



#### APPENDIX A:

## EXAMPLES OF COMMANDS:

All examples given here below refer to a drive having address 0.

| COMMAND STRING                                                   | DRIVE ANSWER                                      | FUNCTION                                                                                                                  |
|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 0xFC, 0x20, 0x01, 0xE2                                           | 0x06                                              | Drive reset                                                                                                               |
| 0xFC, 0x20, 0x02, 0xE1                                           | 0x06                                              | Software start                                                                                                            |
| 0xFC, 0x20, 0x10, 0xD3                                           | 0x06, 0xFC, 0x20, 0x10                            | Request for software version. The answer is $0x20 = version 2.0$                                                          |
| 0xFC, 0x20, 0x11, 0xD2                                           | 0x06                                              | Immediate stop                                                                                                            |
| 0xFC, 0x20, 0x12, 0xD1                                           | 0x06, 0xFC, 0x80, 0x00, 0x00, 0x00,<br>0x00, 0x7D | Reading of present position. In this case the motor position is 0.                                                        |
| 0xFC, 0x20, 0x13,0xD0                                            | 0x06, 0xFC, 0x40, 0x22                            | Input/output reading. In this case the third answer byte indicates that input 3 is activated.                             |
| 0xFC, 0x20, 0x14, 0xCF                                           | 0x06, 0xFC, 0x20, 0x02                            | Request of drive type. The involved drive has the code number 0x20.                                                       |
| 0xFC, 0x60, 0x20, 0x01, 0x5E, 0x24                               | 0x06                                              | Setting to 350 Hz minimum frequency.                                                                                      |
| 0xFC, 0x60, 0x21, 0x07, 0xD0, 0xAB                               | 0x06                                              | Setting to 2000 Hz maximum frequency.                                                                                     |
| 0xFC, 0x40, 0x22, 0x32, 0x6F                                     | 0x06                                              | Setting of ramp inclination to 50 (0.5 seconds)                                                                           |
| 0xFC, 0xA0, 0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40 | 0x06                                              | Setting of absolute motor position to value 0                                                                             |
| 0xFC, 0x40, 0x26, 0x00, 0x9D                                     | 0x06                                              | Setting of motor resolution to full steps                                                                                 |
| 0xFC, 0x40, 0x27, 0x99, 0x03                                     | 0x06                                              | Setting of current reduction to 25% of<br>rated current after a time of 25<br>(25x32ms=0.8 seconds)                       |
| 0xFC, 0x40, 0x28, 0x03, 0x98                                     | 0x06                                              | Setting answer delay of serial<br>interface (3x512µs)                                                                     |
| 0xFC, 0x40, 0x29, 0x44, 0x56                                     | 0x06                                              | Setting of start trigger on up-front<br>input 3<br>(signal transition from low to high)                                   |
| 0xFC, 0x40, 0x2A, 0x22, 0x77                                     | 0x06                                              | Setting of trigger stop on up-front<br>input 2<br>(signal transition from low to high)                                    |
| 0xFC, 0x20, 0x2B, 0x00, 0xB8                                     | 0x06                                              | Output level in position 0 when motor<br>Is holding                                                                       |
| 0xFC, 0x40, 0x2C, 0x11, 0x86                                     | 0x06                                              | Setting of home trigger of up-front<br>input 1<br>(signal transition from low to high)                                    |
| 0xFC, 0xA0, 0x30, 0x00, 0x00, 0x64m<br>0x00, 0xCF                | 0x06                                              | Absolute positioning equal to 1 motor<br>rev. (value expressed in 1/128 of a<br>step = 25600)                             |
| 0xFC, 0xA0, 0x31, 0x00, 0x00, 0x64,<br>0x00, 0xCE                | 0x06                                              | Relative positioning regarding present<br>position equal to 1 motor rev. CW<br>(value expressed in 1/128 step =<br>25600) |

| 0xFC, 0xA0, 0x31, 0xFF, 0xFF, 0x64,<br>0x00, 0xCE       | 0x06 | Relative positioning regarding present<br>position equal to 1 motor rev. CCW<br>(value expressed in 1/128 step<br>= -25600)                                                               |
|---------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xFC, 0x40, 0x32, 0x00, 0x91                            | 0x06 | Infinite CW motion                                                                                                                                                                        |
| 0xFC, 0x40, 0x32, 0xFF, 0x92                            | 0x06 | Infinite CCW motion.                                                                                                                                                                      |
| 0xFC, 0xC0, 0xA0, 0x11, 0x00, 0x00,<br>0x64, 0x00, 0x2E | 0x06 | Zero at flight active on input 1,<br>transition low/high, with value to be<br>executed by the activation of the<br>input equal to 1 motor rev.(expressed<br>in $1/128$ of a step = 25600) |
| 0xFC, 0x20, 0xA6, 0x3D                                  | 0x06 | Motion to value zero                                                                                                                                                                      |
| 0xFC, 0x60, 0xA8, 0x19, 0x64, 0x7E                      | 0x06 | Setting current to 6.5A                                                                                                                                                                   |

#### EXAMPLE OF CALCULATION Byte\_Checksum (last byte of the string):

For sending the reset command to drive 0, the string will be as follows: 0xFC, 0x20, 0x01, Byte\_Checksum.

For calculating the last byte, proceed as follows:

- Sum up all bytes of the command: 0xFC + 0x20 + 0x01 = 0x11D
- Consider only the less significant byte: 1D Complement the byte found, so to obtain the ByteChecksum: 0xFF 0x1D = E2

The complete command to be sent will be as follows:

0xFC, 0x20, 0x01, 0xE2