

Kraft. Präzision. Partnerschaft.

power. precision. partnership.

Präzisionsgetriebe precision gearboxes

Editorial *editorial*

Mit Kraft und Präzision überzeugen. Mit Partnerschaft begeistern.

Sehr geehrte Damen und Herren,

Kraft, Präzision und Partnerschaft – diese Werte kennzeichnen unsere Unternehmensphilosophie und unsere Arbeit, seit über 80 Jahren.

In unserem neu gestalteten und strukturierten Katalog, der Ihnen heute vorliegt, präsentieren wir Ihnen auf über 90 Seiten unsere gesamte Erfahrung und Leistungsstärke.

Das aktuelle Lieferprogramm umfasst zahlreiche innovative und technologisch ausgereifte Antriebs- und Getriebelösungen. So bieten wir Ihnen mittlerweile sechs verschiedene Planetengetriebebaureihen für die Bereiche Economy, Präzision und High Performance. Als kompetenter Technologie-Partner entwickeln und fertigen wir zudem hochpräzise Verzahnungsteile sowie Sondergetriebe – exakt auf Ihre spezifischen Anforderungen angepasst.

Ganz besonders möchten wir Sie auf ein absolutes Highlight dieser Ausgabe hinweisen: Das WPLN setzt echte Maßstäbe in der Getriebetechnologie. Unser neues Winkelpräzisionsgetriebe überzeugt durch sein deutlich reduziertes Laufgeräusch und seine kompakte Bauweise, durch seine Effizienz und seine hervorragende Performance.

Falls Sie Fragen zum Katalog 2009, zu unseren Produkten und Leistungen haben, stehen wir Ihnen gerne zur Seite.

Bernd Neugart / geschäftsführender Gesellschafter managing partner

Impress with power and precision. Inspire with partnership.

Dear Sir or Madame.

Power, precision and partnership – these values characterise our business philosophy and our work, and have for over 80 years.

In our newly designed and newly structured catalogue, introduced to you today, we present over 90 pages of our experience and performance.

The current product range includes numerous innovative and technologically mature drive and gear solutions. We now offer six different planetary gear series for the sectors Economy, Precision and High Performance. As a competent technology partner, we develop and manufacture highly precise gear parts as well as specialised gearboxes – adapted precisely to your specific needs.

We would especially like to point out the absolute highlight of this edition: The WPLN sets a new benchmark in gearbox technology. Our new angle-precise gearbox distinguishes itself with its significantly reduced operating noise and compactness, its efficiency and excellent performance.

Please contact us if you have any questions about the 2009 catalogue, our products or services – we're happy to help.

Thomas Herr deschäftsführender Gesellschafter managing partner

NEUGART

1

2 - 5Das Unternehmen / The Company

PLN 6 - 19

Spielarmes Planetengetriebe low backlash planetary gear box Für absolute Präzision precision at highest level

WPLN

Inhaltsverzeichnis table of contents

20 - 33

Spielarmes Winkelplanetengetriebe low backlash angle gear box Das Präzisionswinkelgetriebe the precision angular gear box

PLE 34 - 51

Spielarmes Planetengetriebe low backlash planetary gear box Die Economy-Alternative zur PLN-Baureihe the economy alternative to the PLN-line

52 - 67

Spielarmes Winkelplanetengetriebe low backlash angle gear box Das Winkelgetriebe der PLE-Baureihe the angular gear box of PLE-line

PLFE

68 - 77

Spielarmes Economy Flanschgetriebe low backlash economy flange gear box Kompakte Wirtschaftlichkeit compact efficiency

78 - 87

High Performance Flanschgetriebe high performance flange gear box Hohe Steifigkeit mit hohen Leistungsdaten und kurzer Bauform

high stiffness with high performance data and short construction

88-89 Getriebeauswahl / gearhead sizing/selection

- **Maximal übertragbares Abtriebsdrehmoment** Max. transferable output torque
- 92-93 Thermische Auslegung für S1-Betrieb thermal specifications for S1 operation
- 94-95 Sondergetriebe / custom made gear boxes
- 96-97 Verzahnungsteile / custom made toothings

98-100 Kontakt / contact

Perfektion – bis ins Detail. Unsere Produkte.

Effizient und leistungsstark:

Unser Präzisions-Planetengetriebe.

Ob in Werkzeug- oder Spritzgussmaschinen, in Verpackungs-, Druck- und Textilmaschinen, in der Handhabungstechnik oder in der Lackierroboteranlage: Unsere Präzisions-Planetengetriebe sind für zahlreiche Anwendungen ideal geeignet. Dabei bieten wir weit mehr als nur Standard. Die hochwertigen Antriebselemente werden konsequent weiterentwickelt.

Innovativ und individuell:

Unsere Sondergetriebe.

Kompakte Bauform und höhere Leistungsdaten, spezielle Bauanweisungen. Lebensmitteltauglichkeit oder individuelles Design: Wir erfüllen auch Ihre komplexen Anforderungen – in allen Teilbereichen des Maschinenbaus. Die qualifizierten Spezialisten unserer Engineering-Abteilung gestalten Getriebelösungen und -systeme. Leistungs-, kosten- und qualitätsgerecht. Ihr Innovations-Vorteil: Wir setzen auf unsere Erfahrung, greifen zugleich neue Entwicklungen auf und integrieren diese in unsere Kundenlösungen.

Zuverlässig und hochpräzise:

Unsere Verzahnungsteile.

Wir bieten Ihnen viele weitere Komponenten rund um die Antriebstechnik. Passend auf Ihren Bedarf und Ihre Anforderungen.

Auf einen Blick:

- > Ein breites Produktprogramm Standardgetriebe, Sondergetriebe und Verzahnungsteile.
- > Sechs starke Standardbaureihen viele Optionen.
- > Sondergetriebe individuell auf Ihre Anforderungen zugeschnitten.
- > Verzahnungsteile vielfältige Bearbeitungsmöglichkeiten.
- > Hohe Qualität und Flexibilität bei optimalen Lieferzeiten.

Perfection – in every detail. Our products.

Powerful and efficient:

Our precision planetary gearboxes.

Whether in machine tools or die-casting machines, in packaging, printing and textile machines, in automation technology or in robotic painting systems: Our precision planetary gearboxes are ideally suited for numerous applications.

We offer much more than just standard. The high-quality drive elements are continuously being developed further.

At a glance:

- > A broad product range standard gearboxes, specialised gearboxes and gear parts.
- > Six strong standard model series many options.
- > Specialised gearboxes individually customised to your needs.
- > Gear parts a wide range of options.
- > High quality and flexibility with optimal delivery times.

Innovative and individual:

Our specialised gearboxes.

Compact form and high performance, special construction requirements. Food grade certification or individual design: We fulfil even your most complex requirements – in all sectors of machine building. The qualified specialists of our engineering department design gearbox solutions and systems. according to your performance, quality and quality needs.

Your benefit from innovation: We utilise our experience and at the same time take advantage of new developments, integrating them into our customer solutions.

Reliable and highly precise: Our gear parts.

We offer you numerous additional components relating to drive technology. Perfect for your needs and demands.

Leistung – auf hohem Niveau. Unsere Qualität.

Ihre Zufriedenheit ist unser Maßstab
– daher stehen die Qualität unserer
Produkte und Leistungen für uns stets

an erster Stelle.

Mit unserer Qualitäts- und Umweltpolitik sichern und erweitern wir den wirtschaftlichen Erfolg auf allen internationalen Märkten.

Auf einen Blick:

> Zielorientiert.

Wir vereinbaren konkrete Qualitätsziele – unter Verantwortung der Führungskräfte, unter Einbeziehung aller Mitarbeiter sowie unter Berücksichtigung der Arbeitsqualität.

> Engagiert.

Wir setzen auf ein hoch motiviertes und qualifiziertes Team. Neben entsprechenden Schulungen und Unterweisungen erhalten unsere Mitarbeiter sowohl die Befugnisse als auch die Verantwortung für ihre jeweiligen Tätigkeiten.

> Konsequent.

Wir befinden uns in einem Prozess der kontinuierlichen Verbesserung – und verbinden die großen Schritte der Innovation mit den kleinen Schritten der ständigen Optimierung

Nachweislich.

Wir unterhalten und dokumentieren ein umfassendes Qualitäts- und Umweltmanagement-System, das alle Phasen der Leistungserstellung umfasst. Alle normrelevanten Regelungen sind in der Dokumentation des QM /UM- Systems beschrieben.

Power – at a high level. Our quality.

Your satisfaction is our measuring stick – that's why the quality of our products and services are always our top priority.

With our quality and environmental policy we secure and expand our economic success on all international markets.

At a glance:

> Goal oriented.

We declare concrete quality goals – under the responsibility of the management and involvement of all employees as well as consideration of the quality of work

> Committed.

We put emphasis on a highly motivated and qualified team. In addition to training and instruction, our employees receive authority as well as responsibility for their activities.

> Consistent.

We are in a process of continuous improvement – and we connect the large steps of innovation with the small steps of continual optimisation.

> Verifiable.

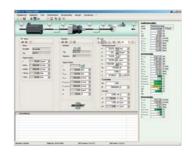
We maintain and document a comprehensive quality and environment management system that comprises all phases of the rendering goods and services. All regulations relevant to the standards are described in the documentation of the QM/EM system.

Einfach mehr Nutzen. Unser Service.

Wir schaffen nicht nur Produkte, sondern gestalten Lösungen – funktionsgerecht, wirtschaftlich, zukunftsweisend. Daher setzen wir auf eine intensive Zusammenarbeit sowie auf eine rundum passende Dienstleistung für Sie.

> Aus einer Hand:

Von der Beratung bis zur Entwicklung. Ihre Aufgabe, unser Auftrag: Wir beraten Sie und entwickeln gemeinsam neue und maßgeschneiderte Lösungen. Rund 10% unserer Mitarbeiter arbeiten in Konstruktion und Entwicklung.


> Auf neuem Stand:

Know-how und Technologie.
Vertrauen Sie auf innovative und bewährte Fertigungsverfahren und auf das Wissen unserer Mitarbeiter. NCP, die Auslegungssoftware für den Antriebsstrang, steht Ihnen kostenlos zur Verfügung. Und unsere Website bietet Ihnen einen umfassenden Download-Bereich – mit CAD-Zeichnungen, Maßblättern oder Betriebsanleitungen.

> Auf alle Fälle:

Effizienz im Mittelpunkt.
Mit unserer erweiterten Produktionsfläche von insgesamt 11.000 m² können wir optimale Lieferzeiten für unsere Standardprodukte garantieren. Zudem profitieren Sie von fair kalkulierten Marktpreisen, von einer permanenten Kostenoptimierung – bei stets hochwertiger Qualität.

Simply greater benefit. Our service. we don't

Fertigungskarte WK2

Surfacebeller 3023
Stattemin: 26.02.09 / 09

14274 090F010-00000
PLS90-10

Pos Artikel/Art

2106
Gehau:
31701
Ab weit
38387
Pallod
24770
Placebeller
2504

We don't just make products, we create solutions – functional, economical and forward-looking. Therefore, intensive collaboration and the right service for you are important to us.

> From one source:

From consulting to development. Your task, our job: We provide consulting and develop new and customised solutions together with you. Roughly 10% of our employees work in development and design.

> At a new level:

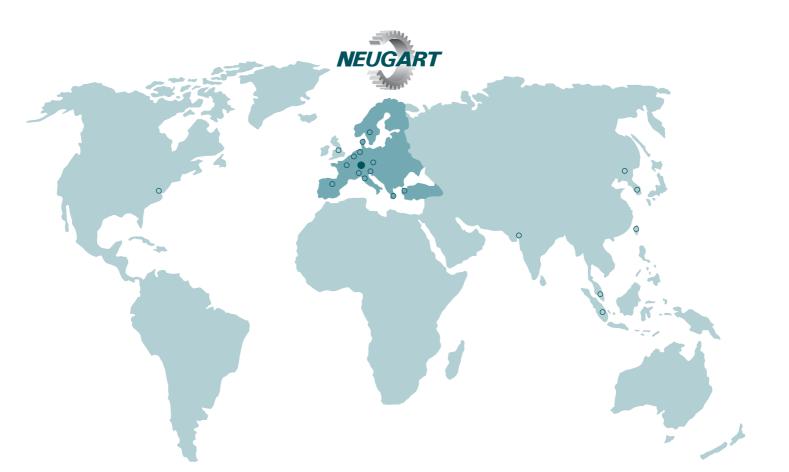
Know-how and technology.
Trust in innovative and proven manufacturing methods and in the knowledge of our employees. NCP, the design software for the power train, is available to you at no cost. And our website offers you a comprehensive download area – with CAD drawings, dimension sheets or operating instructions.

> On all accounts:

Focus on efficiency.

With our expanded production area of 11,000 m² we can guarantee optimal delivery times for our standard products. You also profit from fairly calculated market prices, from permanent cost optimisation – with consistent high quality.

Global für Sie aktiv. Unser Netzwerk.


Unser hoher Standard in Produktqualität, Support und Service wird international geschätzt: Mit über 20 Vertretungen und Niederlassungen sind wir in allen wichtigen Industrienationen der Welt vertreten.

Wir fertigen unsere Produkte ausschließlich in Deutschland. In USA und China bedienen unsere Montage-Werke die regionalen Märkte, garantieren eine höhere Flexibilität bei Adaptionen sowie beste Lieferzeit.

Globally active for you. Our network.

Our high standard in product quality, support and service appreciated internationally: With over 20 representatives and branches, we are represented in all important industrial nations. We manufacture our products exclusively in Germany. In the USA and China, our assembly factory serve regional markets, guaranteeing a high level of flexibility for adaptations as well as the shortest delivery times.

Präzision auf höchstem Niveau

The highest level of precision

Mit unserer Baureihe PLN präsentieren wir ein perfektes Zusammenspiel aus Innovation, Effizienz und Wirtschaftlichkeit. Ob Drehmoment, Gleichlauf oder Laufgeräusch – die attraktive Baureihe kann in allen Belangen erfolgreich punkten.

With our PLN model series we present a perfect combination of innovation, efficiency and economy. Whether torque, synchronous run or operating noise – this attractive model series is successful in every aspect.

- > geringstes Verdrehspiel (<3')
- > hohe Abtriebsdrehmomente
- > PCS-2 serienmäßig
- > hoher Wirkungsgrad (98%)
- > gehonte Verzahnung
- > 14 Übersetzungen i=3,...,100
- > geringes Geräusch (< 58 dB(A))
- > hohe Qualität (ISO 9001)
- > beliebige Einbaulage
- > einfacher Motoranbau
- > Lebensdauerschmierung
- > weitere Optionen
- > Laufrichtung gleichsinnig
- > ausgewuchtetes Motorritzel

- > minimal backlash (<3')
- > high output torque
- > PCS-2 is standard
- > high degree of efficiency (98%)
- > honed gearing
- > 14 Transmission ratios i=3,..., 100
- > low noise (< 58 dB(A))
- > high quality (ISO 9001)
- > universal mounting positions
- > simple motor mounting
- > permanent lubrication
- > further options
- > equidirectional rotation
- > balanced motor pinion

1	technische Daten technical data	Seite 8 page 8	
2	Abmessungen dimensions	Seite 11 page 11	
3	Optionen options	Seite 12 page 12	
4	Motoranbaumöglichkeiten possible motor mounting	Seite 13 page 13	
5	Schnittdarstellung sectional drawing	Seite 17 page 17	
6	Bestellbezeichnung ordering code	Seite 18 page 18	
7	Getriebeauswahl gearhead sizing/selection	Seite 88 page 89	
8	Einheitenumrechnung conversion table	Seite 92 page 93	
9	CAD-Zeichnungen, Maßblätter CAD drawings, dimension sheets	www.neugart.de www.neugart.de	
10	Auslegung/Berechnung dimensioning/calculation	NCP Software NCP Software	

Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	i ⁽¹⁾	Z (2)
			45	100	230	450	1000	3	
			60	140	300	600	1300	4	
			65	140	260	750	1600	5	1
			40	80	150	450	1000	8	
			27	60	125	305	630	10	
			68	120	250	780	1500	12	
Abtriebsdrehmoment	nominal output torque $T_{2N}^{(3)(5)}$	Nm	68	120	250	780	1500	15	
T _{2N} ⁽³⁾⁽⁵⁾		INIII	77	150	300	1000	1800	16	
			77	150	300	1000	1800	20	
			65	140	260	900	1800	25	2
			77	150	300	1000	1800	32	
			65	140	260	900	1800	40	
			40	80	150	450	1000	64	
			27	60	125	305	630	100	

Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	i ⁽¹⁾	Z (2)	
			72	160	368	720	1600	3		
			96	224	480	960	2080	4		
			104	224	416	1200	2560	5	1	
			64	128	240	720	1600	8		
			43	96	200	488	1008	10		
			109	192	400	1248	2400	12		
max. Abtriebsmoment(3)(5)(8)	max. output torque(3)(5)(8)	Nine	109	192	400	1248	2400	15		
max. Abtriebsmoment		Nm	INIII	123	240	480	1600	2880	16	
			123	240	480	1600	2880	20		
			104	224	416	1440	2880	25	2	
			123	240	480	1600	2880	32 40		
			104	224	416	1440	2880			
			64	128	240	720	1600	64		
			43	96	200	488	1008	100		

Serie	line		PLN	Z (2)
Lebensdauer	lifetime	h	20.000	
Lebensdauer bei T _{2N} x 0,88	lifetime at T _{2N} x 0,88] "	30.000	
Not-Aus Moment ⁽⁶⁾	emergency stop ⁽⁶⁾	Nm	2 - faches $T_{2N}/2$ - times of T_{2N}	
Wirlaum gograd bai Valllast(7)	officiona with full load(7)	%	98	1
Wirkungsgrad bei Volllast ⁽⁷⁾	efficiency with full load ⁽⁷⁾	70	95	2
Betriebstemperatur min.(4)	min. operating temp.(4)	· °C	-25	
Betriebstemperatur max. (4)	max. operating temp.(4)		+90	
Schutzart	degree of protection		IP 65	
Schmierung	lubrication]	Lebensdauer-Schmierung /life lubrication	
Einbaulage	mounting position]	beliebig /any	
Motorflansch- genauigkeit	motor flange precision		DIN 42955-R	

- $^{(1)}$ Übersetzungen (i= n_{an}/n_{ab})
- (2) Anzahl Getriebestufen
- $^{(3)}$ die Angaben beziehen sich auf eine Abtriebswellendrehzahl von $n_2 = 100 \text{min}^{-1}$ und Anwendungsfaktor $K_A = 1$ sowie S1-Betriebsart für elektrische Maschinen und T=30°C
- (4) bezogen auf die Mitte der Gehäuseoberfläche
- (5) abhängig vom jeweiligen Motorwellendurchmesser
- (6) 1000-mal zulässig
- $^{(7)}$ übersetzungsabhängig, n_2 =100min $^{-1}$
- (8) zulässig für 30.000 Umdrehungen der Abtriebswelle; siehe Seite 90
- $^{(1)}$ ratios (i= n_{an}/n_{ab})
- (2) number of stages
- $^{(3)}$ these values refer to a speed of the output shaft of $n_2 = 100 min^{-1}$ on duty cycle $K_A = 1$ and S1-mode for electrical machines and T=30°C
- (4) refering to the middle of the body surface
- (5) depends on the motor shaft diameter
- (6) allowed 1000 times
- $^{(7)}$ depends on ratio, n_2 =100min $^{-1}$
- $^{\mbox{\scriptsize (8)}}$ allowable for 30.000 revolutions at the output shaft; see page 91

PLN - Serie technische Daten PLN - Line technical data

Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	Z (2)
Verdrehspiel ⁽⁸⁾	backlash ⁽⁸⁾	oromin	<3	<3	<3	<3	<3	1
verdrenspier	Dackiasii	arcmin	<5	<5	<5	<5	<5	2
Fr _{max.} für 20.000 h ⁽³⁾⁽⁴⁾	$Fr_{max.}$ for 20.000 $h^{(3)(4)}$		3200	5500	6000	12500	21000	
Fa _{max.} für 20.000 h ⁽³⁾⁽⁴⁾	$Fa_{max.}$ for 20.000 $h^{(3)(4)}$		4400	6400	8000	15000	21000	
Fr _{max.} für 30.000 h ⁽³⁾⁽⁴⁾	$Fr_{max.}$ for 30.000 $h^{(3)(4)}$		3200	4800	5400	11400	18000	
Fa _{max.} für 30.000 h ⁽³⁾⁽⁴⁾	$Fa_{max.}$ for 30.000 $h^{(3)(4)}$		3900	5700	7000	13200	18500	
Verdrehsteifigkeit	torsional stiffness	Nm /	6	9	20	44	130	1
verdrenstenigkeit	torsional stillness	arcmin	7	10	22	46	140	2
Gewicht	woight	ka	1,9	3,3	6,9	16,0	30,5	1
Gewicht	weight	kg	2,4	4,2	9,5	20,5	47	2
Laufgeräusch ⁽⁵⁾	running noise(5)	dB(A)	58	60	65	68	72	
max. Antriebsdrehzahl ⁽⁶⁾	max. input speed(6)	min ⁻¹	14000	10000	8500	6500	6000	

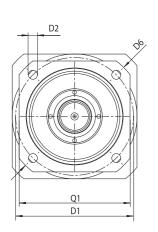
Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	j ⁽¹⁾
			2580	2500	1880	1180	930	3
			2800	2560	1900	1210	940	4
			3100	2990	2410	1240	970	5
			4480	4990	4100	2170	1820	8
	max. middle input speed at 50% T_{2N} and $S1^{(6)(7)}$		5210	6050	4860	2810	2460	10
			3960	4240	3200	1620	1330	12
max. mittlere Antriebsdreh-		min ⁻¹	4420	4880	3200	1880	1550	15
zahl bei 50% T _{2N} und S1 ⁽⁶⁾⁽⁷⁾			4220	4360	3320	1630	1390	16
			4690	5000	3820	1890	1620	20
			5210	5570	4410	2230	1820	25
			5640	6000	5000	2530	2220	32
			6000	6000	5500	2910	2450	40
			6000	6000	5500	4010	3410	64
			6000	6000	5500	4500	3500	100

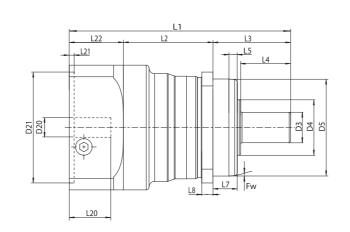
Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	j (1)
			2020	1820	1250	800	600	3
			2090	1720	1190	770	580	4
			2300	2030	1560	770	580	5
			3720	3850	3060	1530	1230	8
			4610	4960	3830	2170	1850	10
	max. middle input speed at 100% T_{2N} and $S1^{(6)(7)}$		2990	3070	2190	1030	830	12
max. mittlere Antriebs-		min ⁻¹	3410	3580	2190	1220	990	15
drehzahl bei 100% T _{2N} und S1 ⁽⁶⁾⁽⁷⁾		'''''	3240	3120	2270	1030	870	16
			3670	3640	2660	1220	1030	20
			4300	4250	3280	1520	1200	25
			4620	4920	3650	1710	1500	32
			5260	5630	4380	2080	1710	40
			6000	6000	5500	3430	2860	64
			6000	6000	5500	4300	3500	100

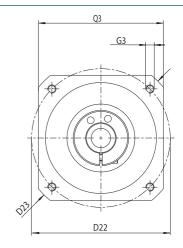
- $^{(1)}$ Übersetzungen (i= n_{an}/n_{ab})
- (2) Anzahl Getriebestufen
- $^{(3)}$ die Angaben beziehen sich auf eine Abtriebswellendrehzahl von $n_2 = 100 \text{min}^{-1}$ und Anwendungsfaktor $K_A = 1$ sowie S1-Betriebsart für elektrische Maschinen und T=30°C
- (4) bezogen auf die Mitte der Abtriebswelle
- (5) Schalldruckpegel in 1 m Abstand; gemessen bei einer Antriebsdrehzahl von n₁=3000min⁻¹ ohne Last; i=5
- (6) zulässige Betriebstemperaturen dürfen nicht überschritten werden; andere Drehzahlen auf Anfrage
- (7) Definition siehe Seite 92
- (8) kleineres Verdrehspiel auf Anfrage

- ⁽¹⁾ ratios ($i=n_{an}/n_{ab}$)
- (2) number of stages
- $^{(3)}$ these values refer to a speed of the output shaft of n_2 =100min⁻¹ on duty cycle K_A =1 and S1-mode for electrical machines and T=30°C
- (4) half way along the output shaft
- $^{(5)}$ sound pressure level; distance 1m; measured on idle running with an input speed of n_1 =3000min $^{-1}$; i=5
- (6) allowed operating temperature must be kept; other input speeds on inquiry
- (7) definition see page 93
- (8) lower backlash on inquiry

Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	i (1)
			0,40	1,01	3,14	16,77	54,20	3
			0,32	0,78	2,40	12,16	39,44	4
			0,28	0,68	2,16	10,31	33,38	5
			0,25	0,59	1,93	8,73	27,49	8
			0,25	0,57	1,90	8,35	25,97	10
			0,40	1,02	3,12	16,72	54,30	12
Trägheitsmoment ⁽²⁾	inertia ⁽²⁾	lvaom²	0,38	0,95	2,95	15,19	52,50	15
magnetismoment ^{-/}	inertia/	kgcm ²	0,35	0,89	2,74	14,52	49,90	16
			0,33	0,82	2,57	13,05	45,03	20
			0,30	0,76	2,38	11,89	40,32	25
			0,32	0,77	2,41	11,94	40,36	32
			0,29	0,70	2,23	10,79	35,68	40
			0,26	0,63	2,03	9,39	30,36	64
			0,25	0,59	1,97	8,76	27,74	100


 $^{^{(1)}}$ Übersetzungen (i= n_{an}/n_{ab})


⁽²⁾ das Trägheitsmoment bezieht sich auf die Antriebswelle und auf Standardmotorwellendurchmesser D20


 $[\]begin{array}{ll} \mbox{\tiny (1)} & \mbox{ratios (i=n_{an}/n_{ab})} \\ \mbox{\tiny (2)} & \mbox{the moment of inertia relates to th e input shaft and to} \\ & \mbox{standard motor shaft diameter D20} \\ \end{array}$

PLN - Serie Abmessungen PLN - Line dimensions

Baugröße	size		PLN 70	PLN 90	PLN 115	PLN 142	PLN 190	Z (2)
Alle Maße in mm	all dimensions in mm							
L1 Gesamtlänge ⁽³⁾	L1 overall length ⁽³⁾		137,5	159,5	201	276	310,5	1
LT Gesamiange.	LT overall length		166,5	191,5	241	335	382,5	2
L2 Gehäuselänge	L2 body length		59	64,5	61,5	91,5	116	1
L2 Genauselange	L2 body length		88	96,5	101,5	150,5	188	2
Abtrieb	output							
D3 Wellendurchmesser	D3 shaft diameter	k6	16	22	32	40	55	
L3 Wellenlänge Abtrieb	L3 shaft length from output		48	56	88	110	112	
D5 Zentrierung	D5 centering	g7	60	70	90	130	160	
D6 Diagonalmaß	D6 diagonal dimension		92	100	140	185	240	
D1 Flanschlochkreis	D1 flange hole circle		68-75	85	120	165	215	
D2 Anschraubbohrung	D2 mounting bore	4x	5,5	6,5	8,5	11	13,5	
Q1 Getriebequerschnitt	Q1 gear box section		70	80	110	142	190	
D4 Wellenansatz	D4 shaft root	-3	35	40	45	70	80	
L4 Wellenl. bis Bund	L4 shaft length from spigot		28	36	58	80	82	
L7 Zentrierbund	L7 spigot depth		19	17,5	28	28	28	
L5 Fasenlänge	L5 bevel length		8	6	8	8	10	
L8 Flanschdicke	L8 flange thickness		7	8	10	12	15	
Fw Fasenwinkel	Fw bevel angle	۰	5	5	5	5	5	
Antrieb	input							
D20 Bohrung ⁽¹⁾⁽⁴⁾	D20 pinion bore ⁽¹⁾⁽⁴⁾		11	14	19	24	32	
L20 Wellenlänge Motor(3)	L20 motor shaft length ⁽³⁾		23	30	40	50	60	
D21 Zentr. Ø für Motor ⁽¹⁾	D21 center bore for motor ⁽¹⁾		60	80	95	130	180	
D22 Lochkreis ⁽¹⁾	D22 hole circle ⁽¹⁾		75	100	115	165	215	
D23 Diagonalmaß	D23 diagonal dimension		92	116	145	185	240	
G3 Anschraubgewinde x Tiefe ⁽¹⁾	G3 mounting thread x depth ⁽¹⁾	4x	M5 x 10	M6 x 12	M8 x 16	M10 x 20	M12 x 24	
L21 Zentrierung Antrieb	L21 motor location depth		3	3,5	3,5	4	5	
Q3 Flanschquerschnitt ⁽¹⁾	Q3 flange section ⁽¹⁾		70	90	115	142	190	
L22 Motorflanschlänge(3)	L22 motor flange length(3)		30,5	39	51,5	74,5	82,5	

⁽¹⁾ je nach Motor andere Maße, siehe Seite 13

⁽²⁾ Anzahl Getriebestufen

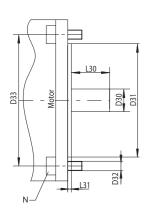
⁽³⁾ Bei längeren Motorwellen L20 verlängert sich die Motorflanschlänge L 22 und die Gesamtlänge L1

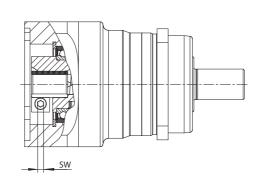
⁽⁴⁾ für Wellenpassung: j6 ; k6

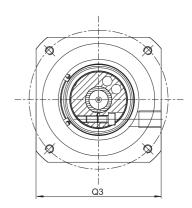
⁽¹⁾ dimensions refer to the mounted motor-type, see page 13

⁽²⁾ number of stages

⁽³⁾ for longer motor shafts L20 applies: The measure motor flange length L22 and the overall length L1 will be lengthen


⁽⁴⁾ for shaft fit: j6; k6


OP 2:	Motoranbau Abmessungen Seite 13	OP 2:	motor mounting dimensions page 13
OP 5:	Zahnwellenverbindung (1) Abmessungen Seite 14	OP 5:	spline shaft ⁽¹⁾ dimensions page 14
OP 7:	Abtriebswelle mit Paßfeder DIN 6885 T1 ⁽¹⁾ Abmessungen Seite 14	OP 7:	output shaft with key DIN 6885 T1 ⁽¹⁾ dimensions page 14
OP 8:	Sonderabtriebswelle (1) Abmessungen Seite 14	OP 8:	special shaft ⁽¹⁾ dimensions page 14
OP 14:	Abmessungen für den PLS-Abtrieb Abmessungen Seite 15	OP 14:	dimensions for the PLS output dimensions page 15


NEUGART

OP 2: Motoranbaumöglichkeiten

OP 2: possible motor mounting

Baugröße	size		PLN	170	PLN	1 90	PLN	115	PLN	142	PLN 190	Z (2)
D30 Motorwellendurch- messer ⁽¹⁾⁽⁵⁾	D30 motor shaft diameter ⁽¹⁾⁽⁵⁾	mm	10/1	10/11/12/		9,525/10/11/ 12/12,7/14/ 16/19/22/24		,7/14/ 16/19/ 4/28/ /35	19/22/ 32/35/	24/28/ /38/42	24/28/32/35/ 38/42/48	
L30 min. Motorwellen- länge ⁽¹⁾	L30 min. motor shaft length ⁽¹⁾		16 (16 (19 ⁽⁶⁾)		21 ⁽⁷⁾)	21 (2	26(8))	26 (2	29 ⁽⁹⁾)	30	
D31 Zentrierdurchmes- ser ⁽³⁾	D31 motor spigot ⁽³⁾		belieb	beliebig/any I		ig/any	beliebig/any		belieb	ig/any	beliebig/any	
D33 Lochkreisdurchmes- ser ⁽³⁾	D33 hole circle diameter ⁽³⁾		beliebig/any		belieb	ig/any	y beliebig/any		beliebig/any		beliebig/any	
Motorbauform ⁽¹⁾	motor type ⁽¹⁾		В	5	B5 B5		В	5	B5			
D32 Bohrung ⁽³⁾	D32 pinion bore ⁽³⁾		belieb	ig/any	beliebig/any beliebig/any		belieb	ig/any	beliebig/any			
N Anzahl Bohrungen	N numbers of mounting bores		4	1	2	4		1	2	1	4	
L31 Zentrierlänge	L31 spigot depth		belieb	ig/any	belieb	ig/any	belieb	ig/any	belieb	ig/any	beliebig/any	
Q3 Flanschquerschnitt ⁽¹⁾	Q3 flange section ⁽¹⁾		7	70		0	11	15	14	10	190	
max. Motorgewicht(4)	max. motor weight ⁽⁴⁾	kg	10		1	5	3	4	5	0	75	
Drehm. Spannschraube	torque clamping screw	Nm	4,5	4,5 9,5		16,5	16,5	40	40	75	75	
SW Schlüsselweite	SW wrench width	mm	3	4	4	5	5	6	6	8	8	

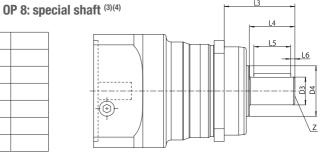
- (1) andere Abmessungen auf Anfrage
- (2) Anzahl Getriebestufen
- (3) innerhalb der Flanschabmessungen
- (4) bei horizontaler und stationärer Einbaulage
- (5) Wellenpassung: j6; k6
- (6) D30 > 14 mm
- (7) D30 > 19 mm
- (8) D30 > 24 mm
- (9) D30 > 35 mm

- (1) other dimensions on inquiry
- (2) number of stages
- $\,^{\scriptscriptstyle{(3)}}\,$ if possible with the given flange dimensions
- (4) refered to horizontal and stationary mounting
- (5) shaft fit: j6; k6
- (6) D30 > 14 mm
- (7) D30 > 19 mm
- (8) D30 > 24 mm
- (9) D30 > 35 mm

OP 5: Zahnwellenverbindung (4)

OP 5: spline shaft (4)

Baugröße size	Zahnwellenverbindung spline shaft	Verzahnungsbreite tooth width	Z Zentrierbohrung Z centre bore
PLN 70	DIN 5480 - W 16 x 0,8 x 30 x 18 x 7 m	15	DIN 332 DR M5x12,5
PLN 70-OP14	DIN 5480 - W 19 x 0,8 x 30 x 22 x 7 m	15	DIN 332 DR M6x16
PLN 90	DIN 5480 - W 22 x 0,8 x 30 x 26 x 7 m	21	DIN 332 DR M8x19
PLN 115	DIN 5480 - W 32 x 1,25 x 30 x 24 x 7m	42	DIN 332 DR M12x28
PLN 142	DIN 5480 - W 40 x 1,25 x 30 x 30 x 7m	65	DIN 332 DR M16x35
PLN 190	DIN 5480 - W 55 x 2 x 30 x 26 x 7m	65	DIN 332 DR M20x4


OP 7: Abtriebswelle mit Paßfeder DIN 6885 T1 (1) (4)

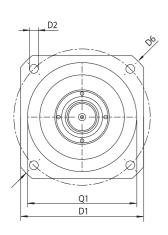
OP 7: output shaft with key DIN 6885 T1 (1) (4)

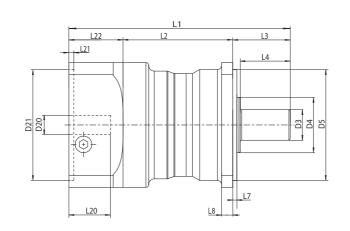
Baugröße	size		PLN 70	PLN 70-OP14	PLN 90	PLN 115	PLN 142	PLN 190
Bezeichnung	title		A5 x 5 x 25	A6 x 6 x 20	A6 x 6 x 28	A10 x 8 x 50	A12 x 8 x 65	A16 x 10 x 70
D3 [k6] Wellendurchmesser	D3 [k6] shaft diameter		16	19	22	32	40	55
L5 Passfederlänge	L5 key length	mm	25	20	28	50	65	70
L6 Abstand v. Wellenende	L6 distance from shaft end		2	4	4	4	8	6
Z Zentrierbohrung	Z centre bore		M5 x 12,5	M6 x 16	M8 x 19	M12 x 28	M16 x 35	M20 x 42
max. Abtriebsmoment(2)	max. output torque(2)	Nm	70	75	100	250	800	1400

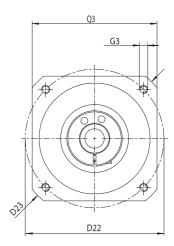
OP 8: Sonderabtriebswelle (3)(4)

Wellendurchmesser	shaft diameter	D3	
Wellenl. bis Bund	shaft length from spigot	L4	
Wellenlänge Abtrieb	shaft length from output	L3	
Passfederlänge	key length	L5	
Abstand v. Wellenende	distance from shaft end	L6	
Paßfederbreite	key width	В	
Zentrierbohrung	centre bore	Z	

- (1) Skizze für Variablen siehe OP 8
- (2) nur bei schwellender Belastung
- (3) Seite kopieren und ausgefüllt zufaxen oder Skizze zu Anfrage beilegen
- (4) auf Anfrage


- (1) sketch for variables see OP 8
- (2) only for tumscent load
- (3) fax page with data or send sketch with your inquiry
- (4) on inquiry


15


PLN - Serie Optionen PLN - Line options

OP 14: Abmessungen für den PLS-Abtrieb

OP 14: dimensions for the PLS output

Baugröße	size		PLN 70 OP 14	PLN 90 OP 14	PLN 115 OP 14	PLN 142 OP 14	PLN 190 OP 14	Z (2)
Alle Maße in mm	all dimensions in mm							
1.1.0	L 1 avantall languith (3)		137,5	159,5	201	276	310,5	1
L1 Gesamtlänge ⁽³⁾	L1 overall length ⁽³⁾		166,5	191,5	241	335	382,5	2
I O Cahausalanga	L O b a dy longth		75	79	85	114,5	138	1
L2 Gehäuselänge	L2 body length		104	111	125	173,5	210	2
Abtrieb	output							
D3 Wellendurchmesser	D3 shaft diameter	k6	19	22	32	40	55	
L3 Wellenlänge Abtrieb	L3 shaft length from output		32	41,5	64,5	87	90	
D5 Zentrierung	D5 centering	h7	60	80	110	130	160	
D6 Diagonalmaß	D6 diagonal dimension		92	116	145	185	240	
D1 Flanschlochkreis	D1 flange hole circle		75	100	130	165	215	
D2 Anschraubbohrung	D2 mounting bore	4x	5,5	6,5	8,5	11	13,5	
Q1 Getriebequerschnitt	Q1 gear box section		70	90	115	142	190	
D4 Wellenansatz	D4 shaft root	-3	35	40	45	70	80	
L4 Wellenl. bis Bund	L4 shaft length from spigot		28	36	58	80	82	
L7 Zentrierbund	L7 spigot depth		3	3	4,5	5	6	
L8 Flanschdicke	L8 flange thickness		7	8	10	20	20	
Antrieb	input							
D20 Bohrung ⁽¹⁾⁽⁴⁾	D20 pinion bore ⁽¹⁾⁽⁴⁾		11	14	19	24	32	
L20 Wellenlänge Motor(3)	L20 motor shaft length ⁽³⁾		23	30	40	50	60	
D21 Zentr. Ø für Motor ⁽¹⁾	D21 center bore for motor ⁽¹⁾		60	80	95	130	180	
D22 Lochkreis ⁽¹⁾	D22 hole circle ⁽¹⁾		75	100	115	165	215	
D23 Diagonalmaß	D23 diagonal dimension		92	116	145	185	240	
G3 Anschraubgewinde x Tiefe ⁽¹⁾	G3 mounting thread x depth ⁽¹⁾	4x	M5 x 10	M6 x 12	M8 x 16	M10 x 20	M12 x 24	
L21 Zentrierung Antrieb	L21 motor location depth		3	3,5	3,5	4	5	
Q3 Flanschquerschnitt ⁽¹⁾	Q3 flange section ⁽¹⁾		70	90	115	142	190	
L22 Motorflanschlänge(3)	L22 motor flange length ⁽³⁾		30,5	39	51,5	74,5	82,5	

⁽¹⁾ je nach Motor andere Maße, siehe Seite 13

⁽²⁾ Anzahl Getriebestufen

⁽³⁾ bei längeren Motorwellen L20 verlängert sich die Motorflanschlänge L22 und Gesamtlänge L1

⁽⁴⁾ für Wellenpassung: j6; k6

⁽¹⁾ dimensions refer to the mounted motor-type, see page 13

⁽²⁾ number of stages

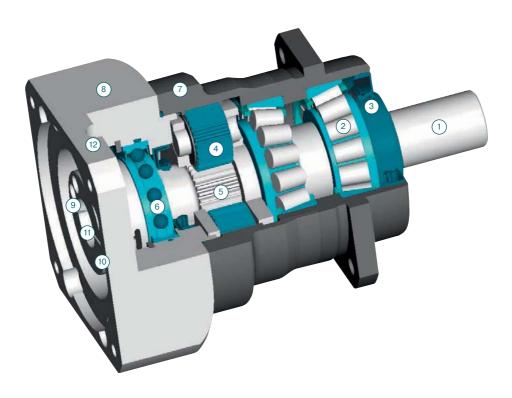
⁽³⁾ for longer motor shafts L20 applies: The measure motor flange length L22 and overall length L1 will be lengthen

⁽⁴⁾ for shaft fit: j6; k6

Baugröße	size		PLN 70 OP 14	PLN 90 OP 14	PLN 115 OP 14	PLN 142 OP 14	PLN 190 OP 14	j (1)
			2380	2320	1740	1080	850	3
			2580	2370	1760	1100	860	4
			2850	2770	2220	1130	880	5
			4110	4620	3800	1990	1660	8
max. mittlere Antriebsdreh- zahl bei 50% T _{2N} und S1 ⁽²⁾⁽³⁾	max. middle input speed at 50% T_{2N} and $S1^{(2)(3)}$	min ⁻¹	4790	5610	4500	2570	2240	10
			3630	3920	2960	1480	1220	12
			4050	4510	2960	1720	1420	15
			3880	4030	3070	1490	1270	16
			4300	4620	3530	1730	1480	20
			4780	5150	4090	2040	1660	25
			5160	5980	4610	2310	2030	32
			5600	6000	5220	2660	2240	40
			6000	6000	5500	3680	3130	64
			6000	6000	5500	4300	3500	100

Baugröße	size		PLN 70 OP 14	PLN 90 OP 14	PLN 115 OP 14	PLN 142 OP 14	PLN 190 OP 14	j (1)
	max. middle input speed at 100% T_{2N} and $S1^{(2)(3)}$		1850	1680	1160	730	540	3
			1910	1590	1100	710	520	4
			2110	1870	1440	700	520	5
			3410	3560	2820	1400	1120	8
max. mittlere Antriebs- drehzahl bei 100% T _{2N} und S1 ⁽²⁾⁽³⁾		min ⁻¹	4230	4580	3540	1980	1690	10
			2730	2820	2020	940	760	12
			3110	3290	2020	1120	900	15
			2960	2870	2090	940	790	16
			3350	3340	2450	1110	940	20
			3940	3910	3020	1380	1090	25
			4230	4520	3350	1550	1360	32
			4810	5180	4030	1900	1560	40
			5910	6000	5500	3140	2610	64
			6000	6000	5500	3940	3400	100

 $[\]begin{tabular}{ll} (1) & \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} (1) & \begin{tabular}{ll} \begin{tab$ andere Drehzahlen auf Anfrage


⁽³⁾ Definition siehe Seite 92

 $^{^{(1)}}$ ratios (i= n_{an}/n_{ab})

⁽²⁾ allowed operating temperature must be kept; other input speeds on inquiry

⁽³⁾ definition see page 93

- Abtriebswelle aus Planetenträger und Abtriebswelle bestehende Hochleistungsbau-
- 2 Abtriebswellenlager große vorgespannte Präzisionskegelrollenlager für Nullspiel der Antriebswelle
- Dichtring

zweckmäßige Doppellippendichtung, hält das Schmiermittel innerhalb und externe verunreinigende Substanzen außerhalb des Getriebes; IP 65

- Planetenräder geradverzahnte Präzisions-Planetenräder mit optimierter Profilmodifikation und Balligkeit; einsatzgehärtet und gehont
- 5 Sonnenrad präzisionsgefertigtes optimiertes Verzahnungsprofil, gehärtet, gehont für hohe Belastbarkeit, geräuscharmen Betrieb, minimalen Verschleiß und gleichbleibendes Verdrehspiel
- Sonnenradlager Hochgeschwindigkeits-Rillenkugellager als Loslager zur Vermeidung von Axialkräften durch Wärmeausdehnung, mit genauer Sonnenradposition für eine einfach Montage
- 7 Gehäuse mit integriertem Hohlrad gehärtetes und durch Honen fertigbearbeitetes Hohlrad für hohe Belastbarkeit, minimalen Verschleiß und gleichbleibendes Verdrehspiel
- 8 Motoradapterplatte erlaubt die Anpassung des Getriebes an praktisch jeden Servomotor, gefertigt aus Aluminium für eine höhere Wärmeleitfähigkeit
- Klemmring ausgewuchteter Klemmring aus Stahl für hohe Drehzahlen und für starke Spannkräfte zur sicheren Übertragung von Drehmomenten
- Klemmschraube hochbelastbare Stahlschraube mit spezieller niedriger Gewindesteigung für hohe Spannkräfte
- PCS-2 System Präzisionsspannsystem - das zuverlässigste und genaueste System, das auf dem Markt angeboten wird
- Montagebohrung Zugangsbohrung für die Spannschraube

- output shaft high strength one piece planet carrier & output shaft
- 2 output shaft bearing large high precision preloaded taper roller bearings for zero clearance
- sealing ring dedicated double lip seal, keeps the lubricant inside, the external contaminant outside the gearbox; IP 65
- 4 planet gear precison zero helix angle gear with optimized profile modifications and crowning; case hardened and hard finished by honing
- 5 sun gear precision machined optimized gear profile, case hardened and honed for high load ability, low noise run, minimum wear and consistant backlash
- 6 bearing for sun gear high speed ball bearings in floating design eliminating thrust loads from thermal expansion, yet providing exact sungear position for easy moun-
- housing with integrated ring gear ring gear case hardened and hard finished, honed for high load ability, minimum wear, consistent backlash
- 8 motor adapter plate allows to match up the gear head with virtually any servo motor, made of aluminum for enhanced thermal conductivity
- clamping ring balanced ring sutiable for high rpm, made of steel to allow high clamping forces for safe torque transfer
- 10 clamping screw high strength steel screw with special low pitch thread to generate a high clamping force
- 11 PCS-2 System Precision Clamping System - most reliable advanced system available
- 12 assembly bore access bore for the clamping screw

PLN 115 - 100 / MOTOR - OP 2 + 5 + ...

Getriebetyp / gear box size PLN 70; PLN 90; PLN 115; PLN 142; PLN 190

Motorbezeichnung (Herstellertyp) motor designation (manufacturer-type)

Übersetzung i / ratio i

1-stufig / 1-stage: 3; 4; 5; 8; 10 2-stufig / 1-stage: 12; 15; 16; 20; 25; 32; 40; 64; 100

OP 2: Motoranbau OP 5: Zahnwellenverbindung

Optionen

OP 7: Abtriebswelle mit Paßfeder DIN 6885 T1

OP 8: Sonderabtriebswelle

OP 14: Abmessungen für den PLS-Abtrieb

options

motor mounting spline shaft

output shaft with key DIN 6885 T1

special shaft

dimensions for the PLS output

Für Ihre Notizen for your notes

UGART NEUGART NEUGART NEUGART NEUGART NEUGART NEUGART NEUGART NEUGART NEUGART NEUGA

ACP&D Limited

86 Rose Hill Road, Ashton-under-Lyne, Lancashire, England, OL6 8YF.

Tel: +44 (0)161 343 1884 Fax: +44 (0)161 343 7773 e-mail; sales@acpd.co.uk Websites: www.acpd.com & www.acpd.co.uk

