

Operating Instructions (Compact)

Issue 07/05

User Documentation

Warnings, Cautions and Notes

The following Warnings, Cautions and Notes are provided for your safety and as a means of preventing damage to the product or components in the machines connected. **Specific Warnings, Cautions and Notes** that apply to particular activities are listed at the beginning of the relevant chapters and are repeated or supplemented at critical points throughout these sections. Please read the information carefully, since it is provided for your personal safety and will also help prolong the service life of your MICROMASTER 440 Inverter and the equipment you connect to it.

WARNING

- This equipment contains dangerous voltages and controls potentially dangerous rotating mechanical parts. Non-compliance with **Warnings** or failure to follow the instructions contained in this manual can result in loss of life, severe personal injury or serious damage to property.
- Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
- The DC link capacitors remain charged for five minutes after power has been removed. It is not permissible to open the equipment until 5 minutes after the power has been removed. The drive unit discharges itself during this time.
- This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 and P0335, i²t is ON by default. Motor overload protection can also be provided using an external PTC or KTY84 (disabled by default P0601).
- This equipment is suitable for use in a circuit capable of delivering not more than 10,000 symmetrical amperes (rms), for a maximum voltage of 230 V / 460 V / 575 V when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller.
- Use Class 1 60/75 °C copper wire only with the cross-sections as specified in the Operating Instructions.
- The mains input, DC and motor terminals, can carry dangerous voltages even if the inverter is inoperative. Always wait **5 minutes** to allow the unit to discharge after switching off before carrying out any installation work.

NOTE

- Before installing and commissioning, please read these safety instructions and warnings carefully and all the warning labels attached to the equipment.
- Please ensure that all of the warning labels are kept in a condition so that they can be easily read and replace missing or damaged labels.
- Maximum permissible surrounding ambient temperature is:
 - Frame Sizes A-F:
 - 50 $^{\circ}C$ at constant torque (CT) and 100 % permissible output current 40 $^{\circ}C$ at variable torque (VT) and 100 % permissible output current
 - Frame Sizes FX and GX:
 40 °C at 100 % permissible output current

Contents

1	Installation	5
1.1	Clearance distances for mounting	5
1.2	Mounting dimensions	5
2	Electrical Installation	6
2.1	Technical Specifications	6
2.2	Power Terminals	13
2.3	Control terminals	21
2.4	Block diagram	22
3	Factory setting	23
3.1	50/60 Hz DIP switch	
4	Communications	24
4.1	Establishing communications MICROMASTER 440 ⇔ STARTER	24
4.2	Establishing communications between the MICROMASTER 440 \Leftrightarrow AOP	
4.3	Bus interface (CB)	
5	BOP / AOP (Option)	
5.1	Buttons and their Functions	
5.2	Changing parameters using as an example P0004 "Parameter filter function"	-
6	Commissioning	
6.1	Quick commissioning	
6.2	Motor data identification	
6.3	Magnetizing current	
6.4	Commissioning the application	
6.4.1	Serial Interface (USS)	
6.4.2	Selection of command source	
6.4.3	Digital input (DIN)	
6.4.4	Digital outputs (DOUT)	
6.4.5	Selection of frequency setpoint	
6.4.6	Analog input (ADC)	
6.4.7	Analog output (DAC)	39
6.4.8	Motor potentiometer (MOP)	40
6.4.9	Fixed frequency (FF)	41
6.4.10	JOG	42
6.4.11	Ramp function generator (RFG)	43
6.4.12	Reference/limit frequencies	
6.4.13	Inverter protection	
6.4.14	Motor protection	
6.4.15	Encoder	
6.4.16	V/f control	
6.4.17	Field-orientated control	50
6.4.17.1 6.4.17.2	Sensorless vector control (SLVC) Vector control with encoder (VC)	
U . T . T I I I		00

6.4.18 6.4.18.1 6.4.18.2 6.4.18.3 6.4.18.4 6.4.18.5 6.4.18.6 6.4.18.7 6.4.18.8 6.4.18.9 6.4.19 6.4.20	Converter-specific Functions	55 55 58 59 60 60 61 62 63
6.4.20	Diagnoseparameter	
6.5	Series commissioning	
6.6	Parameter reset of factory setting	67
7	Displays and messages	68
7.1	LED status display	68
7.2	Fault messages and Alarm messages	

1 Installation

1.1 Clearance distances for mounting

The inverters can be mounted adjacent to each other. When mounting inverters one above the other, the specified environmental conditions must not be exceeded.

Independent of this, these minimum distances must be observed.

- Frame Size A, B, C above and below 100 mm
- Frame Size D, E above and below 300 mm
- Frame Size F above and below 350 mm
- Frame Size FX, GX above 250 mm below 150 mm in front 40 mm (FX), 50 mm (GX)

1.2 Mounting dimensions

	Frame Size	Drilling Di	mensions	Tightenir	ng Torque
		H mm (Inch)	W mm (Inch)	Bolts	Nm (ibf.in)
	А	160 (6.30)	-	2 x M4	
↑	В	174 (6.85)	138 (5.43)	4 x M4	2,5 (22.12)
	С	204 (8.03)	174 (6.85)	4 x M5	· · · /
H H	D	486 (19.13)	235 (9.25)	4 x M8	
↓ ↓ ↓ ↓ ↓	E	616,4 (24.27)	235 (9.25)	4 x M8	3,0
V→V	F	810 (31.89)	300 (11.81)	4 x M8	(26.54)
	FX	1375,5 (54.14)	250 (9.84)	6 x M8	13,0 (115.02)
	GX	1508,5 (59.38)	250 (9.84)	6 x M8	13,0 (115.02)

Fig. 1-1 Mounting dimensions

Electrical Installation 2

Technical Specifications 2.1

Order No	2AB	11-	12-	13-	15-	17-	21-	21-	22-	23-
6SE6440-	2UC	2AA1	5AA1	7AA1	5AA1	5AA1	1BA1	5BA1	2BA1	0CA1
Frame Size				Α				В		С
Output Rating (CT)	[kW] [hp]	0,12 0,16	0,25 0,33	0,37 0,5	0,55 0,75	0,75 1,0	1,1 1,5	1,5 2,0	2,2 3,0	3,0 4,0
Output Power	[kVA]	0,4	0,7	1,0	1,3	1,7	2,4	3,2	4,6	6,0
CT Input Current 1)				4,6	6,2	8,2	11,0	14,4	20,2	35,5
CT Output Current	[A]	0,9	1,7	2,3	3,0	3,9	5,5	7,4	10,4	13,6
Fuse										
Recommended	3NA	3803	3803	3803	3805	3805	3807	3807	3812	3817
for UL specified		*	*	*	*	*	*	*	*	*
Input Cable Min.					16	16	14	14	12	10
Input Cable Max.	[mm²] [awg]	2,5 14	2,5 14	2,5 14	2,5 14	2,5 14	6,0 10	6,0 10	6,0 10	10,0 8
Output Cable Min.	[mm ²] [awg]	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	1,5 16
Output Cable Max.	[mm ²] [awg]	2,5 14	2,5 14	2,5 14	2,5 14	2,5 14	6,0 10	6,0 10	6,0 10	10,0 8
Weight (with built in Class A Filter)	[kg] [lbs]	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	3,4 7,5	3,4 7,5	3,4 7,5	5,7 12,5
Weight (Unfiltered)	[kg] [lbs]	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	3,3 7,3	3,3 7,3	3,3 7,3	5,5 12,1
Tightening torques for power terminals	[Nm] [lbf.in]			1,1 (10)				1,5 (13,3)		2,25 (20)

Input voltage range	1 AC 200 V – 240 V, ± 10 %
(Unfiltered and with	built in Class A Filter)

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply V_k = 2 % referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used, the specified values are reduced by between 55 % and 70 %.

^{*} UL listed fuses such as Class NON from Bussmann are required for use in America

Order No.	6SE6440-	2AC23- 0CA1	2AC24- 0CA1	2AC25- 5CA1
Frame Size			С	
Output Rating(CT)	[kW] [hp]	3,0 4,0	4,0 5,0	5,5 7,5
Output Power	[kVA]	6,0	7,7	9,6
CT Input Current 1)	[A]	15,6	19,7	26,5
CT-Output Current	[A]	13,6	17,5	22,0
VT Input Current 1)	[A]	-	28,3	34,2
VT-Output Current	[A]	-	22,0	28,0
Fuse	[A]	25	32	35
Recommended	3NA	3810	3812	3814
For UL specified		*	*	*
Input Cable, min.	[mm²] [awg]	2,5 14	4,0 12	4,0 12
Input Cable, max.	[mm ²] [awg]	10,0 8	10,0 8	10,0 8
Output Cable, min.	[mm ²] [awg]	1,5 16	4,0 12	4,0 12
Output Cable, max.	[mm ²] [awg]	10,0 8	10,0 8	10,0 8
Weight	[kg] [lbs]	5,7 12,5	5,7 12,5	5,7 12,5
Tightening torques for power terminals	[Nm] [lbf.in]		2,25 (20)	

Input voltage range 3 AC 200 V - 240 V. ± 10 % (with built in Class A Filter)

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $V_k = 2 \%$ referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used, the specified values are reduced by between 55 % and 70 %.

^{*} UL listed fuses such as Class NON from Bussmann are required for use in America

nput voltage rang	ge		3 A	C 200	V – 24	0 V. ±	10 %			(Unfi	ltered)
Order No.	6SE6440-	2UC11 -2AA1	2UC12 -5AA1	2UC1 -7AA					2UC21 -5BA1	2UC22 -2BA1	2UC23 -0CA1
Frame Size			Α			Ē	3			С	
Output Rating(CT)	[kW] [hp]	0,12 0,16	0,25 0,33	0,37 0,5	0,5 0,7			1,1 1,5	1,5 2,0	2,2 3,0	3,0 4,0
Output Power	[kVA]	0,4	0,7	1,0	1,3	3 1	,7	2,4	3,2	4,6	6,0
CT-Input Current 1)	[A]	1,1	1,9	2,7	3,6	6 4	,7	6,4	8,3	11,7	15,6
CT-Output Current	[A]	0,9	1,7	2,3	3,0) 3	,9	5,5	7,4	10,4	13,6
Fuse	[A]	10	10	10	16	6 1	6	20	20	25	25
Recommended	3NA	3803	3803	3803	380	5 38	05 3	807	3807	3810	3810
For UL specified		*	*	*	*		*	*	*	*	*
Input Cable, min.	[mm ²] [awg]	1,0 18	1,0 18	1,0 18	1,5 16		·	2,5 14	2,5 14	2,5 14	4,0 12
Input Cable, max.	[mm ²] [awg]	2,5 14	2,5 14	2,5 14	2,5	5 2	,5	6,0 10	6,0 10	6,0 10	10,0 8
Output Cable, min.	[mm ²] [awg]	1,0 18	1,0 18	1,0 18	1,0) 1	,0	1,0 18	1,0 18	1,0 18	1,5 16
Output Cable, max.	[mm ²] [awg]	2,5 14	2,5 14	2,5 14	2,5	5 2	,5	6,0 10	6,0 10	6,0 10	10,0 8
Weight	[kg] [lbs]	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9		-	3,3 7,3	3,3 7,3	3,3 7,3	5,5 12,1
Tightening torques for power terminals	[Nm] [lbf.in]	1,1 (10)		1,5 (13,3)					2,25 (20)		
Order No.	6SE6440-	2UC24- 0CA1	2UC25- 5CA1	2UC27- 5DA1	2UC31- 1DA1	2UC31- 5DA1	2UC31- 8EA1	2UC32		3- 2UC33 7FA1	2UC34- 5FA1
Frame Size			2	-	D			E	-	F	
Output Rating(CT)	[kW] [hp]	4,0 5,0	5,5 7,5	7,5 10,0	11,0 15,0	15,0 20,0	18,5 25,0	22,0 30,0	30,0 40,0	37,0 50,0	45,0 60,0
Output Power	[kVA]	7,7	9,6	12,3	18,4	23,7	29,8	35,1	45,6	57,0	67,5
CT-Input Current 1)	[A]	19,7	26,5	34,2	38,0	50,0	62,0	71,0	96,0	114,0	135,0
CT-Output Current	[A]	17,5	22,0	28,0	42,0	54,0	68,0	80,0	104,0	130,0	154,0
VT-Input Current 1)	[A]	28,3	34,2	38,0	50,0	62,0	71,0	96,0	114,0	135,0	164,0
VT-Output Current	[A]	22,0	28,0	42,0	54,0	68,0	80,0	104,0	130,0) 154,0	-
Fuse	[A]	32	35	50	80	80	100	125	200	200	250
Recommended	3NA	3812	3814	3820	3824	3824	3830	3032	3140	3142	3144
For UL specified	3NE	*	*	1817-0	1820-0	1820-0	1021-0	1022-0) 1225-	0 1225-0	1227-0
Input Cable, min.	[mm²] [awg]	4,0 12	4,0 12	10,0 8	16,0 6	16,0 6	25,0 3	25,0 3	70,0 2/0	70,0 2/0	95,0 3/0
Input Cable, max.	[mm ²] [awg]	10,0 8	10,0 8	35,0 2	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300) 150,0 300	150,0 300
Output Cable, min.	[mm ²] [awg]	4,0 12	4,0 12	10,0 8	16,0 6	16,0 6	25,0 3	25,0 3	50,0 1/0		95,0 3/0
Output Cable, max	[mm ²] [awg]	10,0 8	10,0 8	35,0 2	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300		150,0 300
	[kg]	5,5	5,5	17,0	16,0	16,0	20,0	20,0	55,0	55,0	55,0
Weight	[lbs]	12,1	12,1	37,0	35,0	35,0	44,0	44,0	121,0) 121,0	121,0

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $V_k = 2 \%$ referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used, the specified values are reduced by between 55 % and 70 %.

> * UL listed fuses such as Class NON from Bussmann are required for use in America

Order No.	6SE6440-	2AD22- 2BA1	2AD23- 0BA1	2AD24- 0BA1	2AD25- 5CA1	2AD27- 5CA1	2AD31- 1CA1	2AD31- 5DA1
Frame Size			В	•		С	•	D
Output Rating(CT)	[kW]	2,2	3,0	4,0	5,5	7,5	11,0	15,0
	[hp]	3,0	4,0	5,0	7,5	10,0	15,0	20,0
Output Power	[kVA]	4,5	5,9	7,8	10,1	14,0	19,8	24,4
CT-Input Current 1)	[A]	7,5	10,0	12,8	15,6	22,0	23,1	33,8
CT-Output Current	[A]	5,9	7,7	10,2	13,2	18,4	26,0	32,0
VT-Input Current 1)	[A]	_	-	-	17,3	23,1	33,8	37,0
VT-Output Current	[A]	_	-	-	20,2	29,0	39,0	45,2
Fuse	[A]	16	16	20	20	32	35	50
Recommended	3NA	3805	3805	3807	3807	3812	3814	3820
For UL specified	3NE	*	*	*	*	*	*	1817-0
Input Cable, min.	[mm ²]	1,5	1,5	2,5	2,5	4,0	6,0	10,0
input Cable, Inin.	[awg]	16	16	14	14	12	10	8
Input Cable, max.	[mm²]	6,0	6,0	6,0	10,0	10,0	10,0	35,0
input ouble, max.	[awg]	10	10	10	8	8	8	2
Output Cable, min.	[mm ²]	1,0	1,0	1,0	2,5	4,0	6,0	10,0
	[awg]	18	18	18	14	12	10	8
Output Cable, max.	[mm ²]	6,0	6,0	6,0	10,0	10,0	10,0	35,0
-	[awg]	10	10	10	8	8	8	2
Weight	[kg] [lbs]	3,4 7,5	3,4 7,5	3,4 7,5	5,7 12,5	5,7 12,5	5,7 12,5	17,0 37,0
Tightening torques for	[Nm]	.,0	1,1	.,0	,.	1,5	,.	2,25
power terminals	[lbf.in]		(10)			(13,3)		(20)
•			(10)		Į	(10,0)		(20)
Order No.	6SE6440-	2AD31-	2AD32-	2AD33-	2AD33-	2AD34-	2AD35-	2AD37-
		8DA1	2DA1	0EA1	7EA1	5FA1	5FA1	5FA1
Frame Size		[C	I	E		F	
Output Rating(CT)	[kW]	18,5	22,0	30,0	37,0	45,0	55,0	75,0
,	[hp]	25,0	30,0	40,0	50,0	60,0	75,0	100,0
Output Power	[kVA]	29,0	34,3	47,3	57,2	68,6	83,8	110,5
CT-Input Current 1)	[A]	37,0	43,0	59,0	72,0	87,0	104,0	139,0
CT-Output Current	[A]	38,0	45,0	62,0	75,0	90,0	110,0	145,0
VT-Input Current 1)	[A]	43,0	59,0	72,0	87,0	104,0	139,0	169,0
VT-Output Current	[A]	45,0	62,0	75,0	90,0	110,0	145,0	178,0
Fuse	[A]	63	80	100	125	160	200	250
Recommended	3NA	3822	3824	3830	3832	3836	3140	3144
For UL specified	3NE	1818-0	1820-0	1021-0	1022-0	1224-0	1225-0	1227-0
	[mm ²]	10,0	16,0	25,0	25,0	35,0	70,0	95,0
Input Cable, min.	[awg]	8	6	3	3	2	2/0	3/0
Input Cable, max.	[mm²]	35,0	35,0	35,0	35,0	150,0	150,0	150,0
πραι σαρίο, Παλ.	[a]					000	000	

Input voltage range 3 AC 380 V – 480 V. ± 10 % (with built in Class A Filter)

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $V_k = 2 \%$ referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor. If a line commutating reactor is used, the

10

(89)

specified values are reduced by between 70 % and 80 %.

2

16,0

6

35,0

2

17,0

37,0

2

25,0

3

35,0

2

22,0

48,0

2

25,0

3

35,0

2

22,0

48,0

300

50,0

1/0

150,0

300

75,0

165,0

300

70,0

2/0

150,0

300

75,0

165,0

50

(445)

300

95,0

3/0

150,0

300

75,0

165,0

Output Cable, min.

Output Cable, max.

Tightening torques for power terminals

Weight

[awg]

[mm²]

[awg]

[mm²]

[awg]

[kg]

[lbs] [Nm]

[lbf.in]

2

10,0

8

35,0

2

17,0

37,0

^{*} UL listed fuses such as Class NON from Bussmann are required for use in America

Input voltage range	Ð		3 /	AC 380	V – 48	0 V. ± 1	0 %			(Unfi	ltered)	
Order No.	6SE6440-	2UD13 -7AA1	2UD15 -5AA1	2UD17 -5AA1	2UD21 -1AA1	2UD21 -5AA1	2UD22 -2BA1	2UD23 -0BA1	2UD24 -0BA1	2UD25 -5CA1	2UD27 -5CA1	
Frame Size				Α				В		(C	
Output Rating(CT)	[kW] [hp]	0,37 0,5	0,55 0,75	0,75 1,0	1,1 1,5	1,5 2,0	2,2 3,0	3,0 4,0	4,0 5,0	5,5 7,5	7,5 10,0	
Output Power	[kVA]	0,9	1,2	1,6	2,3	3,0	4,5	5,9	7,8	10,1	14,0	
CT-Input Current 1)	[A]	2,2	2,8	3,7	4,9	5,9	7,5	10,0	12,8	15,6	22,0	
CT-Output Current	[A]	1,3	1,7	2,2	3,1	4,1	5,9	7,7	10,2	13,2	19,0	
VT-Input Current 1)	[A]	-	-	-	-	-	-	-	-	17,3	23,1	
VT-Output Current	[A]	-	-	-	-	-	-	-	-	19,0	26,0	
Fuse	[A]	10	10	10	10	10	16	16	20	20	32	
Recommended	3NA	3803	3803	3803	3803	3803	3805	3805	3807	3807	3812	
For UL specified		*	*	*	*	*	*	*	*	*	*	
Input Cable, min.	[mm ²] [awg]	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	1,5 16	1,5 16	2,5 14	2,5 14	4,0 12	
Input Cable, max.	[mm ²] [awg]	2,5 14	2,5 14	2,5 14	2,5 14	2,5 14	6,0 10	6,0 10	6,0 10	10,0 8	10,0 8	
Output Cable, min.	[mm ²] [awg]	1,0 18	2,5 14	4,0 12								
Output Cable, max.	[mm²] [awg]	2,5 14	2,5 14	2,5 14	2,5 14	2,5 14	6,0 10	6,0 10	6,0 10	10,0 8	10,0 8	
Weight	[kg] [lbs]	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	1,3 2,9	3,3 7,3	3,3 7,3	3,3 7,3	5,5 12,1	5,5 12,1	
Tightening torques for power terminals	[Nm] [lbf.in]		1,1 (10)					1,5 (13,3)			2,25 (20)	
Order No.	6SE6440-	2UD31	2UD31	2UD31	2UD32	2UD33	2UD33	2UD34	2UD35	2UD37		

Order No.	6SE6440-	2UD31 -1CA1	2UD31 -5DA1	2UD31 -8DA1	2UD32 -2DA1	2UD33 -0EA1	2UD33 -7EA1	2UD34 -5FA1	2UD35 -5FA1	2UD37 -5FA1
Frame Size		С		D		E	_		F	
Output Rating(CT)	[kW] [hp]	11,0 15,0	15,0 20,0	18,5 25,0	22,0 30,0	30,0 40,0	37,0 50,0	45,0 60,0	55,0 75,0	75,0 100,0
Output Power	[kVA]	19,8	24,4	29,0	34,3	47,3	57,2	68,6	83,8	110,5
CT-Input Current 1)	[A]	23,1	33,8	37,0	43,0	59,0	72,0	87,0	104,0	139,0
CT-Output Current	[A]	26,0	32,0	38,0	45,0	62,0	75,0	90,0	110,0	145,0
VT-Input Current 1)	[A]	33,8	37,0	43,0	59,0	72,0	87,0	104,0	139,0	169,0
VT-Output Current	[A]	32,0	38,0	45,0	62,0	75,0	90,0	110,0	145,0	178,0
Fuse	[A]	35	50	63	80	100	125	160	200	250
Recommended	3NA	3814	3820	3822	3824	3830	3832	8036	3140	3144
For UL specified	3NE	*	1817-0	1818-0	1820-0	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable, min.	[mm²] [awg]	6,0 10	10,0 8	10,0 8	16,0 6	25,0 3	25,0 3	35,0 2	70,0 2/0	95,0 3/0
Input Cable, max.	[mm²] [awg]	10,0 8	35,0 2	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300	150,0 300	150,0 300
Output Cable, min.	[mm²] [awg]	6,0 10	10,0 8	10,0 8	16,0 6	25,0 3	25,0 3	35,0 2	70,0 2/0	95,0 3/0
Output Cable, max.	[mm²] [awg]	10,0 8	35,0 2	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300	150,0 300	150,0 300
Weight	[kg] [lbs]	5,5 12,1	16,0 35,0	16,0 35,0	16,0 35,0	20,0 44,0	20,0 44,0	56,0 123,0	56,0 123,0	56,0 123,0
Tightening torques for power terminals	[Nm] [lbf.in]	2,25 (20)			10 (89)				50 (445)	

1) Secondary conditions:

Input current at the rated operating point - applies for the short-circuit voltage of the line supply V_k = 2 % referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 70 % and 80 %.

* UL listed fuses such as Class NON from Bussmann are required for use in America

Input voltage range		3 A0	C 380 V – 48	0 V, ± 10 %		(Unfiltered)
Order No.	6SE6440-	2UD38-8FA1	2UD41-1FA1	2UD41-3GA1	2UD41-6GA1	2UD42-0GA1
Frame Size		F	Х		GX	
Output Rating(CT)	[kW] [hp]	90 125	110 150	132 200	160 250	200 300
Output Power	[kVA]	145,4	180	214,8	263,2	339,4
CT-Input Current 1)	[A]	169	200	245	297	354
CT-Output Current	[A]	178	205	250	302	370
VT-Input Current 1)	[A]	200	245	297	354	442
VT-Output Current	[A]	205	250	302	370	477
	[A]	250	315	400	450	560
Recommendede Fuse	3NE	1227-0	1230-0	1332-0	1333-0	1435-0
Pipe cable shoe to DIN 46235	[mm]	10	10	10	10	10
	[mm²]	1 x 95 or 2 x 35	1 x 150 or 2 x 50	1 x 185 or 2 x 70	1 x 240 or 2 x 70	2 x 95
Input Cable, min.	[awg] or [kcmil]	1 x 4/0 or 2 x 2	1 x 300 or 2 x 1/0	1 x 400 or 2 x 2/0	1 x 500 or 2 x 2/0	2 x 4/0
have the second	[mm²]	1 x 185 or 2 x 120	1 x 185 or 2 x 120	2 x 240	2 x 240	2 x 240
Input Cable, max.	[awg] or [kcmil]	1 x 350 or 2 x 4/0	1 x 350 or 2 x 4/0	2 x 400	2 x 400	2 x 400
Outrut Cable min	[mm²]	1 x 95 or 2 x 35	1 x 150 or 2 x 50	1 x 185 or 2 x 70	1 x 240 or 2 x 70	2 x 95
Output Cable, min.	[awg] or [kcmil]	1 x 4/0 or 2 x 2	1 x 300 or 2 x 1/0	1 x 400 or 2 x 2/0	1 x 500 or 2 x 2/0	2 x 4/0
Output Cable may	[mm²]	1 x 185 or 2 x 120	1 x 185 or 2 x 120	2 x 240	2 x 240	2 x 240
Output Cable, max.	[awg] or [kcmil]	1 x 350 or 2 x 4/0	1 x 350 or 2 x 4/0	2 x 400	2 x 400	2 x 400
Weight	[kg] [lbs]	110 242	110 242	170 418	170 418	170 418
Tightening torques for power terminals	[Nm] [lbf.in]			25 (222,5)		

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $V_k \ge 2.33$ % referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor.

nput voltage range			3 AC 50	0 V – 60	0 V, ± 10) %		(Uni	filtered)
Order No.	6SE6440-	2UE17- 5CA1	2UE21- 5CA1	2UE22- 2CA1	2UE24- 0CA1	2UE25- 5CA1	2UE27- 5CA1	2UE31- 1CA1	2UE31- 5DA1
Frame Size					С				D
Output Rating(CT)	[kW] [hp]	0,75 1,0	1,5 2,0	2,2 3,0	4,0 5,0	5,5 7,5	7,5 10,0	11,0 15,0	15,0 20,0
Output Power	[kVA]	1,3	2,6	3,7	5,8	8,6	10,5	16,2	21,0
CT-Input Current 1)	[A]	2,0	3,7	5,3	8,1	11,1	14,4	21,5	24,9
CT-Output Current	[A]	1,4	2,7	3,9	6,1	9,0	11,0	17,0	22,0
VT-Input Current 1)	[A]	3,2	4,4	6,9	9,4	12,6	18,1	24,9	30,0
VT-Output Current	[A]	2,7	3,9	6,1	9,0	11,0	17,0	22,0	27,0
Fuse	[A]	10	10	10	16	16	25	32	35
Recommended	3NA	3803-6	3803-6	3803-6	3805-6	3805-6	3810-6	3812-6	3814-6
For UL specified	3NE	*	*	*	*	*	*	*	1803-0
Input Cable, min.	[mm²] [awg]	1,0 18	1,0 18	1,0 18	1,5 16	1,5 16	2,5 14	4,0 12	6,0 10
Input Cable, max.	[mm ²] [awg]	10,0 8	35,0 2						
Output Cable, min.	[mm ²] [awg]	1,0 18	1,0 18	1,0 18	1,0 18	1,0 18	2,5 14	4,0 12	4,0 12
Output Cable, max.	[mm ²] [awg]	10,0 8	35,0 2						
Weight	[kg] [lbs]	5,5 12,1	16,0 35,0						
Tightening torques for power terminals	[Nm] [lbf.in]	,	. ,	. ,	2,25 (20)	,	. ,	. ,	10 (89)

Order No.	6SE6440-	2UE31- 8DA1	2UE32- 2DA1	2UE33- 0EA1	2UE33- 7EA1	2UE34- 5FA1	2UE35- 5FA1	2UE37- 5FA1
Frame Size		D		E		F		
Output Rating(CT)	[kW] [hp]	18,5 25,0	22,0 30,0	30,0 40,0	37,0 50,0	45,0 60,0	55,0 75,0	75,0 100,0
Output Power	[kVA]	25,7	30,5	39,1	49,5	59,1	73,4	94,3
CT-Input Current 1)	[A]	30,0	35,0	48,0	58,0	69,0	83,0	113,0
CT-Output Current	[A]	27,0	32,0	41,0	52,0	62,0	77,0	99,0
VT-Input Current 1)	[A]	35,0	48,0	58,0	69,0	83,0	113,0	138,0
VT-Output Current	[A]	32,0	41,0	52,0	62,0	77,0	99,0	125,0
Fuse	[A]	50	63	80	80	125	160	160
Recommended	3NA	3820-6	3822-6	3824-6	3824-6	3132-6	3136-6	3136-6
For UL specified	3NE	1817-0	1818-0	1820-0	1820-0	1022-0	1024-0	1224-0
Input Cable, min.	[mm²] [awg]	10,0 8	10,0 8	16,0 6	25,0 3	25,0 3	50,0 1/0	50,0 1/0
Input Cable, max.	[mm²] [awg]	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300	150,0 300	150,0 300
Output Cable, min.	[mm²] [awg]	6,0 10	10,0 8	16,0 6	16,0 6	25,0 3	35,0 2	50,0 1/0
Output Cable, max.	[mm²] [awg]	35,0 2	35,0 2	35,0 2	35,0 2	150,0 300	150,0 300	150,0 300
Weight	[kg] [lbs]	16,0 35,0	16,0 35,0	20,0 44,0	20,0 44,0	56,0 123,0	56,0 123,0	56,0 123,0
Tightening torques for power terminals	[Nm] [lbf.in]			0 9)			50 (445)	

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $V_k = 2 \ \%$ referred to the rated drive converter power and a rated line supply voltage of 500 V without line commutating reactor. If a line commutating reactor is used, the specified values are reduced by between 80 % and 90 %.

* UL listed fuses such as Class NON from Bussmann are required for use in America

2.2 **Power Terminals**

You can gain access to the mains and motor terminals by removing the front covers.

- Frame Size A (Fig. 2-1)
- Frame Sizes B and C (Fig. 2-2)
- Frame sizse D and E (Fig. 2-3)
- Frame Size F (Fig. 2-4)
- Frame Sizes FX and GX (Fig. 2-5)
- Connection terminals for Frame Sizes A F (Fig. 2-6)
- > Connection overview for Frame Size FX (Fig. 2-7)
- > Connection overview for Frame Size GX (Fig. 2-8)

Frame Size A

Fig. 2-1 Removing front covers (Frame Size A)

Frame Sizes B and C

Fig. 2-2 Removing front covers (Frame Sizes B and C)

Frame Sizes D and E

Fig. 2-3 Removing front covers (Frame Sizes D and E)

Frame Size F

Fig. 2-4 Removing front covers (Frame Size F)

Frame Sizes FX and GX

Access to the power supply and motor terminals is possible by removing the front covers.

Fig. 2-6 Connection terminals for Frame Sizes A - F

Fig. 2-7 Connection overview for Frame Size FX

Fig. 2-8 Connection overview for Frame Size GX

2.3 Control terminals

Terminal	Designation	Function
1	_	Output +10 V
2	-	Output 0 V
3	ADC1+	Analog input 1 (+)
4	ADC1-	Analog input 1 (-)
5	DIN1	Digital input 1
6	DIN2	Digital input 2
7	DIN3	Digital input 3
8	DIN4	Digital input 4
9	-	Isolated output +24 V / max. 100 mA
10	ADC2+	Analog input 2 (+)
11	ADC2–	Analog input 2 (-)
12	DAC1+	Analog output 1 (+)
13	DAC1-	Analog output 1 (-)
14	PTCA	Connection for PTC / KTY84
15	РТСВ	Connection for PTC / KTY84
16	DIN5	Digital input 5
17	DIN6	Digital input 6
18	DOUT1/NC	Digital output 1 / NC contact
19	DOUT1/NO	Digital output 1 / NO contact
20	DOUT1/COM	Digital output 1 / Changeover contact
21	DOUT2/NO	Digital output 2 / NO contact
22	DOUT2/COM	Digital output 2 / Changeover contact
23	DOUT3/NC	Digital output 3 / NC contact
24	DOUT3/NO	Digital output 3 / NO contact
25	DOUT3/COM	Digital output 3 / Changeover contact
26	DAC2+	Analog output 2 (+)
27	DAC2-	Analog output 2 (-)
28	-	Isolated output 0 V / max. 100 mA
29	P+	RS485 port
30	N-	RS485 port

Fig. 2-9 Control terminals of MICROMASTER 440

2.4 Block diagram

Fig. 2-10 Block diagram

3 Factory setting

The MICROMASTER 440 frequency inverter is set in the factory so that it can be operated without any additional parameterization. To do this, the motor parameters set in the factory (P0304, P0305, P0307, P0310), that correspond to a 4-pole 1LA7 Siemens motor, must match the rated data of the connected motor (refer to the rating plate).

Further factory setting:

- Command sources P0700 = 2 (Digital input, see Fig. 3-1)
- Setpoint source P1000 = 2 (Analog input, see Fig. 3-1)
- Motor cooling
 P0335 = 0
- Motor current limit P0640 = 150 %
- Min. frequency P1080 = 0 Hz
- Max. frequency P1082 = 50 Hz
- Ramp-up time P1120 = 10 s
- Ramp-down time P1121 = 10 s
- Control modeP1300 = 0

Fig. 3-1 Pre-assignment of the inputs

Input/Output	Terminals	Parameter	Function	
Digital input 1	5	P0701 = 1	ON / OFF1	(I/O)
Digital input 2	6	P0702 = 12	Reversing	(৵৵)
Digital input 3	7	P0703 = 9	Fault acknowledge	(Ack)
Digital input 4	8	P0704 = 15	Fault acknowledge	
Digital input 5	16	P0705 = 15	Fixed setpoint (direct)	
Digital input 6	17	P0706 = 15	Fixed setpoint (direct)	
Digital input 7	Via ADC1	P0707 = 0	Fixed setpoint (direct)	
Digital input 8	Über ADC2	P0708 = 0	Digital input disabled	

3.1 50/60 Hz DIP switch

The default motor base frequency of the MICROMASTER inverter is 50 Hz. For motors, which are designed for a base frequency of 60 Hz, the inverters can be set to this frequency using the DIP50/60 switch.

- OFF position: European defaults (Rated motor frequency = 50 Hz, Power in kW etc.)
- ON position: North American defaults (Rated motor frequency = 60 Hz, Power in hp etc.)

4 Communications

4.1 Establishing communications MICROMASTER 440 ⇔ STARTER

The following optional components are additionally required in order to establish communications between STARTER and MICROMASTER 440:

- PC <-> frequency inverter connecting set
- BOP if the USS standard values (refer to Section 6.4.1 "Serial Interface (USS)") are changed in the MICROMASTER 440 frequency inverter

4.2 Establishing communications MICROMASTER 440 ⇔ AOP

- Communications between AOP and MM440 are based on the USS protocol, analog to STARTER and MM440.
- Contrary to the BOP, the appropriate communication parameters both for the MM440 as well as for AOP - should be set if the automatic interface detection was not carried-out (refer to Table 4-1).
- Using the optional components, the AOP can be connected to the communication interfaces (refer to Table 4-1).

Table 4-1

	AOP at the BOP link	AOP at the COM link
MM440 parameters - baud rate - bus address	P2010[1] _	P2010[0] P2011
AOP parameters - baud rate - bus address	P8553	P8553 P8552
Options - direct connection - indirect connection	No option necessary BOP/AOP door mounting kit (6SE6400-0PM00-0AA0)	Not possible AOP door mounting kit (6SE6400-0MD00-0AA0)

AOP as control unit

Parameter / Terminal		AOP on BOP link	AOP on COM link
Command source	P0700	4	5
Frequency setpoint	P1000		1
(MOP)	P1035	2032.13 (2032.D)	2036.13 (2036.D)
	P1036	2032.14 (2032.E)	2036.14 (2036.E)
	F D	PARAMS 10000 Access Pa P Operate Dr	
	P	I=0.0A RP	0.00Hz P M = 0 ▲ 0.0V ★
0		Output frequency	of the MOP higher
0		Output frequency of the MOP lower	
Acknowledge fault	P2104	2032.7	2036.7

• A fault can be acknowledged via the AOP independently of P0700 or P1000.

4.3 Bus interface (CB)

5 BOP / AOP (Option)

5.1 Buttons and their Functions

Panel/ Button	Function	Effects
^{P(1)} r 0000	Indicates Status	The LCD displays the settings currently used by the converter.
0	Start converter	Pressing the button starts the converter. This button is disabled by default. Activate the button: BOP: P0700 = 1 or P0719 = 10 16 AOP: P0700 = 4 or P0719 = 40 46 on BOP link P0700 = 5 or P0719 = 50 56 on COM link
0	Stop converter	 OFF1 Pressing the button causes the motor to come to a standstill at the selected ramp down rate. Activate the button: see button "Start converter" OFF2 Pressing the button twice (or once long) causes the motor to coast to a standstill. BOP: This function is always enabled (independent of P0700 or P0719).
۲	Change direction	Press this button to change the direction of rotation of the motor. Reverse is indicated by a minus (-) sign or a flashing decimal point. Disabled by default. Activate the button: see button "Start converter".
Jog	Jog motor	In the "Ready to power-on" state, when this key is pressed, the motor starts and rotates with the pre-set jog frequency. The motor stops when the button is released. Pressing this button when the motor is running has no effect.
đ	Functions	 This button can be used to view additional information. It works by pressing and holding the button. It shows the following, starting from any parameter during operation: DC link voltage (indicated by d – units V). output current. (A) output frequency (Hz) output voltage (indicated by o – units V). The value selected in P0005 (If P0005 is set to show any of the above (1 - 4) then this will not be shown again). Additional presses will toggle around the above displays. Jump Function From any parameter (rxxxx or Pxxxx) a short press of the Fn button will immediately jump to r0000, you can then change another parameter, if required. Upon returning to r0000, pressing the Fn button will return you to your starting point. Acknowledgement If alarm and fault messages are present, then these can be acknowledged by pressing key Fn.
P	Access parameters	Pressing this button allows access to the parameters.
0	Increase value	Pressing this button increases the displayed value.
0	Decrease value	Pressing this button decreases the displayed value.
FD+P	AOP menu	Calls the AOP menu prompting (this is only available for AOP).

5.2 Changing parameters using as an example P0004 "Parameter filter function"

St	ep	Result on the display
1	Press P in order to access the parameter	^{P(1)} Hz
2	Press O until P0004 is displayed	P(1) HZ P0004
3	Press P in order to reach the parameter value level	P(1) Hz
4	Press 🛇 or 🛇 in order to obtain the required value	٦
5	Press P to acknowledge the value and to save the value	P(1) P0004
6	The user can only see the command parameters.	•

6 Commissioning

6.1 Quick commissioning

The frequency inverter is adapted to the motor using the quick commissioning function and important technological parameters are set. The quick commissioning shouldn't be carried-out if the rated motor data saved in the frequency inverter (4-pole 1LA Siemens motor, star circuit configuration \cong frequency inverter (FU)-specific) match the rating plate data.

Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

P0304 = P0305 = P0305 =	Rated motor voltage FU-spec. (Nominal motor voltage [V] from rating plate) The rated motor voltage on the rating plate must be checked, regarding the star/delta circuit configuration to ensure that it matches with the circuit connection configured at the motor terminal board P0310 P0304 Rated motor current [A] FU-spec.
P0307 =	from rating plate) FU-spec. Rated motor power FU-spec. (Nominal motor power [kW/hp] P0307 P0305 from rating plate) P0308 P0311 If P0100 = 0 or 2, value will be in kW. Example of a typical motor rating plate If P0100 = 1, value will be in in hp. KW-1
♥ ♥ P0308 =; P0308 =	Rated motor cosPhiFU-spec.(Nominal motor power factor $(\cos \phi)$ from rating plate)If the setting is 0, the value is automatically calculatedP0100 = 1,2: P0308 no significance, no entry required.
P0309 =	Rated motor efficiencyFU-spec.(Nominal motor efficiency in [%] from rating plate)Setting 0 causes internal calculation of value.P0100 = 0: P0309 no significance, no entry required.
P0310 =	Rated motor frequency50.00 Hz(Nominal motor frequency in [Hz] from rating plate)Pole pair number recalculated automatically if parameter is changed.
P0311 =	Rated motor speed FU-spec. (Nominal motor speed in [rpm] from rating plate) Setting 0 causes internal calculation of value. NOTE An entry must be made for closed-loop Vector control, V/f control with FCC and for slip compensation.
P0320 =	Motor magnetizing current 0.0 (this is entered as a % referred to P0305) 0.0 Motor magnetizing current as a % relative to P0305 (rated motor current). 0.0 With P0320 = 0, the motor magnetizing current is calculated using P0340 = 1 or using P3900 = 1 - 3 (end of the quick commissioning) – and is displayed in parameter r0331.
P0335 =	Motor cooling0(Selects motor cooling system used)00Self-cooled: Using shaft mounted fan attached to motor1Force-cooled: Using separately powered cooling fan2Self-cooled and internal fan3Force-cooled and internal fan
P0640 =	Motor overload factor150 %(Motor overload factor in [%] relative to P0305)This defines the limit of the maximum output current as a % of the rated motorcurrent (P0305). This parameter is set, using P0205 for constant torque, to150 %, and for variable torque, to 110 %.
P0700 =	Selection of command source2(enters the command source)00Factory default setting1BOP (keypad)2Terminal4USS on BOP link5USS on COM link (control terminals 29 and 30)6CB on COM link (CB = communications module)

P1135 =	OFF3 ramp-down time (enters the fast stop ramp-down time in s) Enters the time, for example, with which the motor should be braked from maximum frequency P1082 down to standstill for an OFF3 command (fas If the ramp-down time is parameterized too low, then this can result in ala A0501 (current limit value), A0502 (overvoltage limit value) or the drive in being shutdown with fault F0001 (overcurrent) or F0002 (overvoltage).	st stop). arms verter
P1300 =	Control mode(enters the required control mode)0V/f with linear characteristic11V/f with FCC22131445151516111222222222222222223222322232232323333444 </td <td>0</td>	0
P1500 =	Selection of torque setpoint * (enters the source for the torque setpoint) 0 No main setpoint 2 Analog setpoint 4 USS on BOP link 5 USS on COM link (control terminals 29 and 30) 6 CB on COM link (CB = communications module) 7 Analog setpoint 2	0
♥ P1910 =	Select motor data identification * 0 Disabled	0
P1960 =	Speed controller optimization * 0 Inhibited In order to optimize the speed controller, the closed-loop vector control (F 20 or 21) must be activated. After the optimization has been selected (P1960 = 1), Alarm A0542 is displayed.	0 21300 =
P3900 = 1	 End of quick commissioning (start of the motor calculation) No quick commissioning (no motor calculations) Motor calculation and reset of all of the other parameters, which are included in the quick commissioning (attribute "QC" = no), to the fact setting Motor calculation and reset of the I/O settings to the factory setting Only motor calculation. The other parameters are not reset. NOTE For P3900 = 1,2,3 → P0340 is internally set to 1 and the appropriate dat calculated. 	tory
END	End of the quick commissioning/drive setting	se the

If additional functions must be implemented at the drive inverter, please use the Section **"Commissioning the application"** (refer to Section 6.4). We recommend this procedure for drives with a high dynamic response.

6.2 Motor data identification

6.3 Magnetizing current

- The value of the magnetizing current r0331/P0320 has a significant influence on the closed-loop control. This cannot be measured at standstill. This means that the value is estimated for standard 4-pole 1LA7 SIEMENS standard using the automatic parameterization P0340=1 (P0320=0; result in r0331).
- If the deviation of the magnetizing current is too high, then the values for the magnetizing reactance and those of the rotor resistance will not be able to be accurately determined.
- Especially for third-party motors it is important that the magnetizing current that is determined, is carefully checked and if required, appropriately corrected.

The procedure to manually determine the magnetizing current and to re-calculate the equivalent circuit diagram data when the drive is operated with closed-loop vector control (P1300 = 20/21) is shown in the following.

1

Commissioning the application 6.4

An application is commissioned to adapt/optimize the frequency inverter - motor combination to the particular application. The frequency inverter offers numerous functions - but not all of these are required for the particular application. These functions can be skipped when commissioning the application. A large proportion of the possible functions are described here; refer to the parameter list for additional functions.

Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

START

P0003 = 3

- User access level *
- Standard: Allows access into most frequently used parameters 1 2
 - Extended: Allows extended access e.g. to inverter I/O functions
- 3 Expert (For expert use only)

6.4.1 Serial Interface (USS)

P2010 =	USS baud rate 6 Sets baud rate for USS communication.	Possible Settings:
		4 2400 Baud
♥ P2011 =	USS address 0 Sets unique address for inverter.	5 4800 Baud 6 9600 Baud 7 19200 Baud
₽2012 =	USS PZD length 2 Defines the number of 16-bit words in PZD part of USS telegram.	8 38400 Baud 9 57600 Baud 10 76800 Baud
P2013 =	USS PKW length 127 Defines the number of 16-bit words in PKW part of USS telegram.	11 93750 Baud 12 115200 Baud

6.4.2 Selection of command source

6.4.3 Digital input (DIN)

6.4.4 Digital outputs (DOUT)

BI: Function of digital output 1 * Defines source of digital output 1.	52.3	Common Settings:52.0 Drive ready052.1 Drive ready to run0	
BI: Function of digital output 2 * Defines source of digital output 2. BI: Function of digital output 3 * Defines source of digital output 3.	52.7 0.0	52.1 Drive ready to run052.2 Drive running052.3 Drive fault active52.4 OFF2 active152.5 OFF3 active152.6 Switch on inhibit active0	0
Invert digital output Defines high and low states of relay given function.	0 / for a	52.6 Switch on hinder active To 52.7 Drive warning active 52.8 Deviation, setpoint / actual value 52.9 Control from PLC (PZD control) 52.A Maximum frequency reached 52.B Alarm: Motor current limiting 52.C Motor holding brake (MHB) active 52.D Motor overload 52.E Motor direction of rotation, clockwise 52.F Frequency inverter overload 53.0 DC brake active	0 1 0 1 0 1 0 1 0
DOUT channel BI: Fct. of DOU P0731.C Function xxxx.y P0731 = xxxx.y		int. 24 V)

6.4.5 Selection of frequency setpoint

6.4.6 Analog input (ADC)

6.4.7 Analog output (DAC)

6.4.8 Motor potentiometer (MOP)

Setpoint memory of the MOP

Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down.

MOP setpoint will not be stored
MOP setpoint will be stored (P1040 is updated)

Inhibit negative MOP setpoints

Neg. MOP setpoint is allowedNeg. MOP setpoint inhibited

Setpoint of the MOP

Determines setpoint for motor potentiometer control.

5.00 Hz

1

0

MOP ramp-up and ramp-down times are defined by the parameters P1120 and P1121.

Possible parameter settings for the selection of MOP:

	Selection	MOP up	MOP down
DIN	P0719 = 0, P0700 = 2, P1000 = 1 or P0719 = 1, P0700 = 2	P0702 = 13 (DIN2)	P0703 = 14 (DIN3)
BOP P0719 = 0, P0700 = 1, P1000 = 1 or P0719 = 11		UP button	DOWN button
USS on BOP link	P0719 = 0, P0700 = 4, P1000 = 1 or P0719 = 41	USS control word r2032 Bit13	USS control word r2032 Bit14
USS on COM link	P0719 = 0, P0700 = 5, P1000 = 1 or P0719 = 51	USS control word r2036 Bit13	USS control word r2036 Bit14
СВ	P0719 = 0, P0700 = 6, P1000 = 1 or P0719 = 61	CB control word r2090 Bit13	CB control word r2090 Bit14

6.4.9 Fixed frequency (FF)

P1001 =	Fixed frequency 10.00 HzCan be directly selected via DIN1(P0701 = 15, 16)	
¥ P1002 =	Fixed frequency 25.00 HzCan be directly selected via DIN2(P0702 = 15, 16)	
♥ P1003 =	Fixed frequency 310.00 HzCan be directly selected via DIN3(P0703 = 15, 16)	
P1004 =	Fixed frequency 415.00 HzCan be directly selected via DIN4(P0704 = 15, 16)	selected for fixed frequencies: 15 = Direct selection (binary-coded)
P1005 =	Fixed frequency 520.00 HzCan be directly selected via DIN5(P0705 = 15, 16)	fixed frequency, e.g.: Digital input 3 = selects fixed frequency 3.
P1006 =	Fixed frequency 625.00 HzCan be directly selected via DIN6(P0706 = 15, 16)	 If several inputs are simultaneously active, then these are summed. An ON command is additionally required. 16 = Direct selection + ON command
P1007 =	Fixed frequency 7 30.00 Hz	In this mode, the fixed frequencies are
P1008 =	Fixed frequency 8 35.00 Hz	combined with an ON command.
▼ P1009 =	Fixed frequency 9 40.00 Hz	17 = Binary coded selection + ON command (BCD-coded + On/ Off1) The BCD-coded operating mode is effective for
♥ P1010 =	Fixed frequency 10 45.00 Hz	
♦ P1011 =	Fixed frequency 11 50.00 Hz	
♦ P1012 =	Fixed frequency 12 55.00 Hz	
♦ P1013 =	Fixed frequency 13 60.00 Hz	
♦ P1014 =	Fixed frequency 14 65.00 Hz	
♦ P1015 =	Fixed frequency 15 65.00 Hz	
♦ P1016 =	Fixed frequency code - Bit 0 1	1 Direct selection
	Defines the selection method for fixed frequencies.	2 Direct selection + ON command3 Binary coded selection + ON command
♦ P1017 =	Fixed frequency code - Bit 1 1	NOTE For settings 2 and 3, all parameters P1016 to
♦ P1018 =	Fixed frequency code - Bit 2 1	P1019 must be set to the selected value so that the drive inverter accepts the ON command.
♦ P1019 =	Fixed frequency code - Bit 3 1	
♦ P1025 =	Fixed frequency code - Bit 4 1	1 Direct selection 2 Direct selection + ON command
♦ P1027 =	Fixed frequency code - Bit 5 1	2 Direct selection + ON command

6.4.10 JOG

6.4.11 Ramp function generator (RFG)

6.4.12 Reference/limit frequencies

P1080 =	Min. frequency (entered in Hz) 0.00 Hz
	Sets minimum motor frequency [Hz] at which motor will run irrespective of frequency setpoint. If the setpoint falls below the value of p1080, then the output frequency is set to p1080 taking into account the sign.
P1082 =	Max. frequency (entered in Hz) 50.00 Hz
	Sets maximum motor frequency [Hz] at which motor will run irrespective of the frequency setpoint. If the setpoint exceeds the value p1082, then the output frequency is limited. The value set here is valid for both clockwise and anticlockwise rotation.
P2000 =	Reference frequency (entered in Hz) 50.00 Hz
	The reference frequency in Hertz corresponds to a value of 100 %. This setting should be changed if a maximum frequency of higher than 50 Hz is required. It is automatically changed to 60 Hz if the standard 60 Hz frequency was selected using p0100. NOTE
Ļ	This reference frequency effects the setpoint frequency as both the frequency setpoints via USS as well as via PROFIBUS (FB100) (4000H hex \triangleq 100 % \triangleq p2000) refer to this value.
P2001 =	Reference voltage (entered in V) 1000 V The reference voltage in Volt (output voltage) corresponds to a value of 100 %. NOTE This setting should only be changed if it is necessary to output the voltage with a different scaling. It is necessary to output the voltage with a different scaling.
▼ P2002 =	Reference current (entered in A) 0.10 A
	The reference current in Amps (output current) corresponds to a value of 100 %. Factory setting = 200 % of the rated motor current (P0305). NOTE
	This setting should only be changed if it is necessary to output the current with a different scaling.
P2003 =	Reference torque (entered in Nm) 0.12 Mn The reference torque in Nm corresponds to a value of 100 %. Factory setting = 200 % of the rated motor torque at a constant motor torque determined from the appropriate motor data. NOTE
	This setting should only be changed if it is necessary to output the torque with a different scaling.

6.4.13 Inverter protection

6.4.14 Motor protection

In addition to the thermal motor protection, the motor temperature is also included in the adaptation of the motor equivalent circuit diagram data. Especially for a high thermal motor load, this adaptation has a significant influence on the degree of stability of the closed-loop vector control. For MM440 the motor temperature can only be measured using a KTY84 sensor. For the parameter setting P0601 = 0,1, the motor temperature is calculated / estimated using the thermal motor model. If the frequency inverter is permanently supplied with an external 24V voltage, then the motor temperature is also tracked/corrected using the motor temperature time constant – even when the line supply voltage is switched-out.

0

A high thermal motor load and when the line supply is frequently switchedout/switched-in requires, for closed-loop vector control

that a KTY84 sensor is used, or

6.4.15 Encoder

					T	
P0400 =	Select encoder typ Selects the encoder		Parameter	Terminal	Track	Encoder output
	0 Inhibited		P0400 = 1	А		single ended
	1 Single-track pu 2 Two-track puls The table shows the	e encoder		A AN		differential
	P0400 as a function number of tracks:		P0400 = 2	A B		single ended
				A AN B BN		differential
					ches on the encoder n HTL) and encoder outp	
	Туре	Ou single ended	itput differer	ntial	ON A	
	TTL (e.g. 1XP8001-2)	111111	0101	01		
	HTL (e.g. 1XP8001-1)	101010	0000	00		<u> </u>
P0408 =	Encoder pulses per revolution 1024 Specifies the number of encoder pulses per revolution. 1024				1024	
P0491 =	Reaction on speedDefines the calculat00110111	ion method.				0
▼ P0492 =	Allowed speed difference 10.00 Hz Parameter P0492 defines the frequency threshold for the loss of the encoder signal (fault F0090). CAUTION p0492 = 0 (no monitoring function): With p0492 = 0, the loss of the encoder signal at high frequency as well as at a low frequency is de-activated. As a result, the system does not monitor for the loss of the encoder signal.					
P0494 =	Delay speed loss reaction 10 ms P0492 is used to detect the loss of the encoder signal at low frequencies. If the motor speed is less than the value of P0492, the loss of the encoder signal is determined using an appropriate algorithm. P0494 defines the delay time between detecting the loss of the speed signal and initiating the appropriate response. CAUTION p0494 = 0 (no monitoring function): With p0494 = 0, the loss of the encoder signal at low frequencies is de-activated. As a result, at these frequencies, a loss of the encoder signal is not detected (loss of the encoder signal at high frequency remains active as long as parameter p0492 > 0).			the motor ermined using an loss of the vated. As a		

6.4.16 V/f control

6.4.17 Field-orientated control

Limitations

6.4.17.2 Vector control with encoder (VC)

- > First step: Parameterizing the speed encoder (refer to Section 6.4.15)
- When commissioning Vector Control with encoder-feedback (VC), the drive should be configured for V/f mode (see p1300) first. Run the drive and compare r0061 with r0021 that should agree in:
 - sign
 - magnitude (with a deviation of only a few percent)
 - Only if both criteria are fulfilled, change p1300 and select VC (p1300 = 21/23).
- Encoder loss detection must be disabled (p0492 = 0) if torque is limited externally., e.g.:
 - closed-loop winder control
 - traversing / moving to a fixed endstop
 - when using a mechanical brake

Supplementary torque setpoint

- In the vector mode with / without encoder the speed controller can be subordinate to a constant or variable supplementary torque.
- The supplementary setpoint can be used to advantage for hoisting gear with low intrinsic friction when starting in the vertical direction. The supplementary torque setpoint must always be impressed in the hoisting (raising) direction (please observe the sign!). As a result of the supplementary torque, also when lowering, a slip is immediately established that has a stabilizing effect on the closed-loop control (there is no significant load sag).
- The sign of the supplementary torque setpoint can be determined as follows in the commissioning phase with the appropriate care and taking into account all of the relevant safety regulations: Hoist (raise) a minimum load using the hoisting gear and read-out the sign from parameter r0079 (the sign of r0079 corresponds to the sign of the supplementary torque setpoint).
- An empirical value of approx. 40 % of the rated motor torque r0333 has lead to good results for existing hoisting gear (carefully observe the sign!).

1

6.4.18 Converter-specific Functions

6.4.18.1 Flying start

P1200 =	Flying start 0 Starts inverter onto a spinning motor by rapidly changing the output frequency of the inverter until the actual motor speed has been found. 0 Flying start disabled 1 Flying start disabled 1 Flying start is always active, start in direction of setpoint 2 Flying start is active if power on, fault, OFF2, start in direction of setpoint 3 Flying start is active if fault, OFF2, start in direction of setpoint 4 Flying start is always active, only in direction of setpoint 5 Flying start is active if power on, fault, OFF2, only in direction of setpoint 5 Flying start is active if power on, fault, OFF2, only in direction of setpoint 6 Flying start is active if fault, OFF2, only in direction of setpoint
▶ P1202 =	Motor-current: Flying start (entered in %) 100 % Defines search current used for flying start. 100 %
P1203 = ?	Search rate: Flying start (entered in %) 100 % Sets factor by which the output frequency changes during flying start to synchronize with turning motor. 100 %

6.4.18.2 Automatic restart

Automatic restart

Configures automatic restart function.

- 0 Disabled
- 1 Trip reset after power on
- 2 Restart after mains blackout
- 3 Restart after mains brownout or fault
- 4 Restart after mains brownout
- 5 Restart after mains blackout and fault
- 6 Restart after mains brown/blackout or fault

6.4.18.3 Holding brake

- > Series / commissioning for hazardous loads
 - lower the load to the floor
 - when replacing the frequency inverter, prevent (inhibit) the frequency inverter from controlling the motor holding brake (MHB)
 - secure the load or inhibit the motor holding brake control (so that the brake cannot be controlled) and then – and only then – carry-out quick commissioning / parameter download using the PC-based tool (e.g. STARTER, AOP)
- > Parameterize the weight equalization for hoisting gear applications
 - magnetizing time P0346 greater than zero
 - min. frequency P1080 should approximately correspond to the motor slip r0330 (P1080 \approx r0330)
 - adapt the voltage boost to the load
 - a) V/f (P1300 = 0 ...3): P1310, P1311
 - b) SLVC (P1300 =20): P1610, P1611
- It is not sufficient to just select the status signal r0052 bit 12 "motor holding brake active" in P0731 – P0733. In order to activate the motor holding brake, in addition, parameter P1215 must be set to 1.
- It is not permissible to use the motor holding brake as operating brake. The reason for this is that the brake is generally only dimensioned/designed for a limited number of emergency braking operations.
- The brake closing / opening times can be taken from the appropriate manual. The following typical values have been taken from Motor Catalog M11 2003/2004, Page 2/51:

Motor size	Brake type	Opening time [ms]	Closing time [ms]
63	2LM8 005-1NAxx	25	56
71	2LM8 005-2NAxx	25	56
80	2LM8 010-3NAxx	26	70
90	2LM8 020-4NAxx	37	90
100	2LM8 040-5NAxx	43	140
112	2LM8 060-6NAxx	60	210
132	2LM8 100-7NAxx	50	270
160	2LM8 260-8NAxx	165	340
180	2LM8 315-0NAxx	152	410
200 225	2LM8 400-0NAxx	230	390

6.4.18.4 DC brake

6.4.18.5 Compound braking

0

6.4.18.6 Dynamic braking

P1237 = ... Dynamic braking

Dynamic braking is activated using parameter P1237 – the nominal (rated) duty cycle as well as the switch-in duration of the braking resistor are also defined.

- 0 Inhibited
- 1 Load duty cycle 5 %
- 2 Load duty cycle 10 %
- 3 Load duty cycle 20 %
- 4 Load duty cycle 50 %
- 5 Load duty cycle 100 %

Using the dynamic brake, the regenerative feedback energy is transferred to the external braking resistor using the chopper control (braking chopper); it is converted into thermal energy (heat) in this resistor. This dynamic braking allows the drive to be braked in a controlled fashion. This function is not available for sizes FX and GX.

6.4.18.7 Vdc controller

6.4.18.8 PID controller

P2200 =	BI: Enable PID controller PID mode Allows user to enable/disable the PID controller. Setting to 1 enables the controller. Setting 1 automatically disables normal ramp times set in P1120 and P11 the normal frequency setpoints				
P2253 =	CI: PID setpoint Defines setpoint source for PID setpoint input				0.0
P2254 =	CI: PID trim s Selects trim s the PID setor	source for PID setpoint. This sign	nal is multiplied t	by the trim gain and ad	0.0 dded to
P2257 =		ne for PID setpoint			1.00 s
P2258 =		time for PID setpoint			1.00 s
P2264 =	CI: PID feeds	oack ource of the PID feedback signa	I		755.0
P2267 =		or PID feedback er limit for the value of the feedb	ack signal in [%]		<mark>100.00 %</mark>
P2268 =		or PID feedback	ו 1%1		0.00 %
♦ P2280 =	PID proportion	onal gain a set proportional gain for PID or	ontroller		3.000
♦ P2285 =	PID integral	time time constant for PID controller			0.000 s
♦ P2291 =	PID output u	pper limit nit for PID controller output in [%	.1		<mark>100.00 %</mark>
P2292 =	PID output lo Sets lower lin	ower limit hit for the PID controller output in	ר [%]		0.00 %
Example:	PID MOP ADC PID FF USS BOP link USS COM link CB COM link ADC2		PID PID PID SCL P2271	0 0 Moto PID _{Output} & P2251	
Example:	Parameter	Parameter text	Example		
	-		Example		
	P2200 P2253	BI: Enable PID controller CI: PID setpoint	P2200 = 1.0 P2253 = 2224	PID controller active PID-FF1	
	P2264	CI: PID setpoint CI: PID feedback	P2264 = 755	ADC	
	P2267	Max. PID feedback	P2267	Adapt to the applicat	tion
	P2268	Min. PID feedback	P2268	Adapt to the applicat	
	P2280	PID proportional gain	P2280	Determined by optim	
	P2285	PID integral time	P2285	Determined by optim	-
	P2291	PID output upper limit	P2291	Adapt to the applicat	tion

P2292

PID output lower limit

P2292

Adapt to the application

6.4.18.9 Free function blocks (FFB)

P2800 =	Enable FFBs 0			
F2000	Parameter P2800 is used to activate all free function blocks (generally, P2800 is set to 1).			
	Possible settings:			
	0 Inhibited			
¥	1 Enabled			
P2801 =	Activate FFBs 0.0			
	Parameter P2801 is used to individually enable (activate) the free function blocks P2801[0] to P2801[16] (P2801[x] > 0).			
	Further, parameters P2801 and P2802 are used to define the chronological sequence of			
	all of the function blocks. The table below indicates that the priority increases from left to			
	right and from bottom to top.			
	Possible settings: 0 Inactive			
	1 Level 1			
	2 Level 2			
	0 Level 3 Example:			
	P2801[3] = 2, P2801[4] = 2, P2802[3] = 3, P2802[4] = 2			
	FFBs are calculated in the following sequence:			
	P2802[3], P2801[3] , P2801[4], P2802[4]			
	The active function blocks are calculated every 132 ms.			
P2802 =	Activate FFBs Parameter P2802 is used to individually enable (activate) the free function blocks P2802[0] to P2802[13] (P2802[x] > 0).			
	Possible settings:			
	0 Inactive			
	1 Level 1 2 Level 2			
	1 Level 3			
	low Priority 2 high			
	Level 2			
	Level 1			
	CMP 2 CMP 1 DIV 2 DIV 2 DIV 2 DIV 2 DIV 2			
	P2802 [13] P2802 [13] P2802 [14] P2802 [14] P2802 [14] P2802 [14] P2802 [14] P2801 [14]			
	P2802 P2802 P2802 P2802 P2802 P2801			
	· · · · · · · · · · · · · · · · · · ·			

6.4.19 Command and drive data set

6.4.20 Diagnoseparameter

r0035	CO: Motor temperature Displays the measured motor temperature in °C.		
r0036	CO: Frequency inverter utilization Displays the frequency inverter utilization as a % referred to the overload. In so doing, the value is calculated using the I ² t model. The I ² t actual value relative to the maximum possible I ² t value provides the level of utilization.		
r0052	CO/BO: Act. status word 1 Displays the first active status word (ZSW) of the frequency inverter (bit format) and can be used to diagnose the inverter status.		
r0054	CO/BO: Control word 1 Displays the first control word (STW) of the frequency inverter and can be used to display the active commands.		
r0063	CO: Actual frequency Displays the actual frequency in Hz. Frequency actual values: V/f		
r1079	CO: Selected frequency setpoint Displays the selected frequency setpoint. The following frequency setpoints are displayed: r1078 total setpoint (HSW + ZUSW) P1058 JOG frequency, clockwise P1059 JOG frequency, counter-clockwise.		
r1114	CO: Freq. setpoint after dir. ctrl. Displays the setpoint (reference) frequency in Hz after the function block to reverse the direction of rotation.		
r1170	CO: : Frequency setpoint after RFG Displays the total frequency setpoint (reference value) in Hz after the ramp-function generator.		

6.5 Series commissioning

An existing parameter set can be transferred to a MICROMASTER 440 frequency inverter using STARTER or DriveMonitor (refer to Section 4.1 "Establishing communications MICROMASTER 440 ⇔ STARTER").

Typical applications for series commissioning include:

- 1. If several drives are to be commissioned that have the same configuration and same functions. A quick / application commissioning (first commissioning) must be carried-out for the first drive. Its parameter values are then transferred to the other drives.
- 2. When replacing MICROMASTER 440 frequency inverters.

6.6 Parameter reset of factory setting

7 Displays and messages

7.1 LED status display

	SIEMENS			EDs for indicating ne drive state OFF ON approx. 0.3 s, flashing approx. 1 s, twinkling
••	Mains not present		ф	Fault inverter temperature
\ ₩ ₩	Ready to run		00	Warning current limit both LEDs twinkling same time
₩	● Inverter fault ☆ other than the ones listed below		00	Other warnings both LEDs twinkling alternatively
¥ ●	* Inverter running		00	Undervoltage trip / undervoltage warning
	Fault overcurrent		00	Drive is not in ready state
Fault overvoltage			00	ROM failure both LEDs flashing same time
			••	RAM failure both LEDs flashing alternatively

7.2 Fault messages and Alarm messages

Fault	Significance
F0001	Overcurrent
F0002	Overvoltage
F0003	Undervoltage
F0004	Inverter Overtemperature
F0005	Inverter I ² t
F0011	Motor Overtemperature I ² t
F0012	Inverter temp. signal lost
F0015	Motor temperature signal lost
F0020	Mains Phase Missing
F0021	Earth fault
F0022	HW monitoring active
F0023	Output fault
F0024	Rectifier Over Temperature
F0030	Fan has failed
F0035	Auto restart after n
F0040	Automatic Calibration Failure
F0041	Motor Data Identification Failure
F0042	Speed Control Optimisation Failure
F0051	Parameter EEPROM Fault
F0052	Power stack Fault
F0053	IO EEPROM Fault
F0054	Wrong IO Board
F0060	Asic Timeout
F0070	CB setpoint fault
F0071	USS (BOP link) setpoint fault
F0072	USS (COM link) setpoint fault
F0080	ADC lost input signal
F0085	External Fault
F0090	Encoder feedback loss
F0101	Stack Overflow
F0221	PID Feedback below min. value
F0222	PID Feedback above max. value
F0450	BIST Tests Failure (Service mode only)
F0452	Belt Failure Detected

Alarm	Significance
A0501	Current Limit
A0502	Overvoltage limit
A0503	Undervoltage Limit
A0504	Inverter Overtemperature
A0505	Inverter I ² t
A0506	Inverter Duty Cycle
A0511	Motor Overtemperature I ² t
A0520	Rectifier OverTemperature
A0521	Ambient OverTemperature
A0522	I2C read out timeout
A0523	Output fault
A0535	Braking Resistor Hot
A0541	Motor Data Identification Active
A0542	Speed Control Optimization Active
A0590	Encoder feedback loss warning
A0600	RTOS Overrun Warning
A0700 -	CB warning 1
:	:
A0709	CB warning 9
A0710	CB communication error
A0711	CB configuration error
A0910	Vdc-max controller de-activated
A0911	Vdc-max controller active
A0912	Vdc-min controller active
A0920	ADC parameters not set properly
A0921	DAC parameters not set properly
A0922	No load applied to inverter
A0923	Both JOG Left and Right are requested
A0952	Belt Failure Detected
A0936	PID Autotuning Active

Information about MICROMASTER 440 is also available from:

Regional Contacts

Please get in touch with your contact for Technical Support in your Region for questions about services, prices and conditions of Technical Support.

Central Technical Support

The competent consulting service for technical issues with a broad range of requirements-based services around our products and systems.

Europe / Africa

 Tel:
 +49 (0) 180 5050 222

 Fax:
 +49 (0) 180 5050 223

 Email:
 adsupport@siemens.com

America

Tel:	+1 423 262 2522
Fax:	+1 423 262 2589
Email:	simatic.hotline@sea.siemens.com

Asia / Pacific

Tel:	+86 1064 757 575
Fax:	+86 1064 747 474
Email:	adsupport.asia@siemens.com

Online Service & Support

The comprehensive, generally available information system over the Internet, from product support to service & support to the support tools in the shop. http://www.siemens.com/automation/service&support

Internet Address

Customers can access technical and general information under the following address: <u>http://www.siemens.com/micromaster</u>

Siemens AG Bereich Automation and Drives (A&D) Geschäftsgebiet Standard Drives (SD) Postfach 3269, D-91050 Erlangen Bundesrepublik Deutschland

© Siemens AG, 2005 Änderungen vorbehalten

